Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Theor Appl Genet ; 135(6): 1923-1937, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35357525

RESUMEN

KEY MESSAGE: Unstable Restorer-of-fertility (Rfu), conferring unstable fertility restoration in the pepper CGMS system, was delimited to a genomic region near Rf and is syntenic to the PPR-like gene-rich region in tomato. The use of cytoplasmic-genic male sterility (CGMS) systems greatly increases the efficiency of hybrid seed production. Although marker development and candidate gene isolation have been performed for the Restorer-of-fertility (Rf) gene in pepper (Capsicum annuum L.), the broad use of CGMS systems has been hampered by the instability of fertility restoration among pepper accessions, especially sweet peppers, due to the widespread presence of the Unstable Restorer-of-fertility (Rfu) locus. Therefore, to investigate the genetic factors controlling unstable fertility restoration in sweet peppers, we developed a segregation population (BC4F5) from crosses using a male-sterile line and an Rfu-containing line. Segregation did not significantly deviate from a 3:1 ratio for unstable fertility restoration to sterility, indicating single dominant locus control for unstable fertility restoration in this population. Genetic mapping delimited the Rfu locus to a 398 kb genomic region on chromosome 6, which is close to but different from the previously identified Rf-containing region. The Rfu-containing region harbors a pentatricopeptide repeat (PPR) gene, along with 10 other candidate genes. In addition, this region is syntenic to the genomic region containing the largest number of Rf-like PPR genes in tomato. Therefore, the dynamic evolution of PPR genes might be responsible for both the restoration and instability of fertility in pepper. During genetic mapping, we developed various molecular markers, including one that co-segregated with Rfu. These markers showed higher accuracy for genotyping than previously developed markers, pointing to their possible use in marker-assisted breeding of sweet peppers.


Asunto(s)
Capsicum , Capsicum/genética , Fertilidad/genética , Genes de Plantas , Genómica , Fitomejoramiento , Infertilidad Vegetal/genética
2.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142354

RESUMEN

In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Mapeo Cromosómico , Genoma de Planta , Genotipo , Desequilibrio de Ligamiento , Mutación , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética
3.
Molecules ; 24(16)2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430944

RESUMEN

The flowers of chrysanthemum species are used as a herbal tea and in traditional medicine. In addition, members of the genus have been selected to develop horticultural cultivars of diverse floral colors and capitulum forms. In this research, we investigated the phytochemical composition of eight gamma-irradiation mutant cultivars of Chrysanthemum morifolium and their original cultivars. The mutant chrysanthemum cultivars were generated by treatment with various doses of 60Co gamma irradiation of stem cuttings of three commercial chrysanthemum cultivars as follows: 'ARTI-Dark Chocolate' (50Gy), 'ARTI-Purple Lady' (30 Gy), and 'ARTI-Yellow Star' (50 Gy) derived from 'Noble Wine'; 'ARTI-Red Star' (50 Gy) and 'ARTI-Rising Sun' (30 Gy) from 'Pinky'; 'ARTI-Purple' (40 Gy) and 'ARTI-Queen' (30 Gy) from 'Argus'; and 'ARTI-Rollypop' (70 Gy) from 'Plaisir d'amour'. Quantitative analysis of flavonoids, phenolic acids, anthocyanins, and carotenoids in the flowers of the 12 chrysanthemum cultivars was performed using high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry (HPLC-DAD-ESIMS). Essential oils from the flowers of these cultivars were analyzed by gas chromatography-mass spectrometry (GC-MS). The mutant cultivars, 'ARTI-Dark Chocolate', 'ARTI-Purple Lady', 'ARTI-Purple', and 'ARTI-Queen' showed higher total amounts of flavonoid and phenolic acid compared with those of the respective original cultivars. The mutant cultivars, 'ARTI-Dark Chocolate', 'ARTI-Purple Lady' and 'ARTI-Purple', which produce purple to pink petals, contained more than two-times higher amounts of anthocyanins compared with those of their original cultivars. Of the mutant cultivars, 'ARTI-Yellow Star' in which petal color was changed to yellow, showed the greatest accumulation of carotenoids. Ninety-nine volatile compounds were detected, of which hydrocarbons and terpenoids were abundant in all cultivars analyzed. This is the first report that demonstrated the phytochemical analysis of novel chrysanthemum cultivars derived from C. morifolium hydrid using HPLC-DAD-ESIMS and GC-MS. These findings suggest that the selected mutant chrysanthemum cultivars show potential as a functional source of phytochemicals associated with the abundance of health-beneficial components, as well as good source for horticulture and pigment industries.


Asunto(s)
Chrysanthemum/química , Fitoquímicos/química , Antocianinas/química , Carotenoides/química , Cromatografía Líquida de Alta Presión/métodos , Color , Flavonoides/química , Flores/química , Rayos gamma , Aceites Volátiles/química , Pigmentación
4.
New Phytol ; 213(2): 886-899, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27612097

RESUMEN

Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.


Asunto(s)
Capsicum/genética , Capsicum/virología , Resistencia a la Enfermedad/genética , Evolución Molecular , Genes de Plantas , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Segregación Cromosómica/genética , Sitios Genéticos , Familia de Multigenes , Mapeo Físico de Cromosoma , Plantas Modificadas Genéticamente , Nicotiana/virología
5.
Theor Appl Genet ; 129(8): 1541-56, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27147070

RESUMEN

KEY MESSAGE: The sy - 2 temperature-sensitive gene from Capsicum chinense was fine mapped to a 138.8-kb region at the distal portion of pepper chromosome 1. Based on expression analyses, two putative F-box genes were identified as sy - 2 candidate genes. Seychelles-2 ('sy-2') is a temperature-sensitive natural mutant of Capsicum chinense, which exhibits an abnormal leaf phenotype when grown at temperatures below 24 °C. We previously showed that the sy-2 phenotype is controlled by a single recessive gene, sy-2, located on pepper chromosome 1. In this study, a high-resolution genetic and physical map for the sy-2 locus was constructed using two individual F2 mapping populations derived from a cross between C. chinense mutant 'sy-2' and wild-type 'No. 3341'. The sy-2 gene was fine mapped to a 138.8-kb region between markers SNP 5-5 and SNP 3-8 at the distal portion of chromosome 1, based on comparative genomic analysis and genomic information from pepper. The sy-2 target region was predicted to contain 27 genes. Expression analysis of these predicted genes showed a differential expression pattern for ORF10 and ORF20 between mutant and wild-type plants; with both having significantly lower expression in 'sy-2' than in wild-type plants. In addition, the coding sequences of both ORF10 and ORF20 contained single nucleotide polymorphisms (SNPs) causing amino acid changes, which may have important functional consequences. ORF10 and ORF20 are predicted to encode F-box proteins, which are components of the SCF complex. Based on the differential expression pattern and the presence of nonsynonymous SNPs, we suggest that these two putative F-box genes are most likely responsible for the temperature-sensitive phenotypes in pepper. Further investigation of these genes may enable a better understanding of the molecular mechanisms of low temperature sensitivity in plants.


Asunto(s)
Capsicum/genética , Frío , Proteínas F-Box/genética , Genes de Plantas , Genes Recesivos , Mapeo Físico de Cromosoma , ADN de Plantas/genética , Sistemas de Lectura Abierta , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Theor Appl Genet ; 129(10): 2003-17, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27470425

RESUMEN

KEY MESSAGE: Using fine mapping techniques, the genomic region co-segregating with Restorer - of - fertility ( Rf ) in pepper was delimited to a region of 821 kb in length. A PPR gene in this region, CaPPR6 , was identified as a strong candidate for Rf based on expression pattern and characteristics of encoding sequence. Cytoplasmic-genic male sterility (CGMS) has been used for the efficient production of hybrid seeds in peppers (Capsicum annuum L.). Although the mitochondrial candidate genes that might be responsible for cytoplasmic male sterility (CMS) have been identified, the nuclear Restorer-of-fertility (Rf) gene has not been isolated. To identify the genomic region co-segregating with Rf in pepper, we performed fine mapping using an Rf-segregating population consisting of 1068 F2 individuals, based on BSA-AFLP and a comparative mapping approach. Through six cycles of chromosome walking, the co-segregating region harboring the Rf locus was delimited to be within 821 kb of sequence. Prediction of expressed genes in this region based on transcription analysis revealed four candidate genes. Among these, CaPPR6 encodes a pentatricopeptide repeat (PPR) protein with PPR motifs that are repeated 14 times. Characterization of the CaPPR6 protein sequence, based on alignment with other homologs, showed that CaPPR6 is a typical Rf-like (RFL) gene reported to have undergone diversifying selection during evolution. A marker developed from a sequence near CaPPR6 showed a higher prediction rate of the Rf phenotype than those of previously developed markers when applied to a panel of breeding lines of diverse origin. These results suggest that CaPPR6 is a strong candidate for the Rf gene in pepper.


Asunto(s)
Capsicum/genética , Paseo de Cromosoma , Fertilidad/genética , Genes de Plantas , Infertilidad Vegetal/genética , Secuencia de Aminoácidos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Marcadores Genéticos , Fenotipo , Proteínas de Plantas/genética , Alineación de Secuencia
7.
BMC Genomics ; 15: 561, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24996600

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. RESULTS: We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. CONCLUSIONS: Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.


Asunto(s)
Capsicum/genética , Genoma Mitocondrial , Infertilidad Vegetal/genética , Mapeo Contig , Repeticiones de Microsatélite/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Sistemas de Lectura Abierta/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ADN , Sintenía/genética , Nicotiana/genética
8.
Planta ; 237(4): 1097-109, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23274393

RESUMEN

Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants.


Asunto(s)
Capsicum/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Infertilidad Vegetal , Proteínas de Plantas/metabolismo , Adenosina Trifosfato/biosíntesis , Cromosomas de las Plantas , Estructura Terciaria de Proteína , Regulación hacia Arriba
9.
Plants (Basel) ; 11(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365348

RESUMEN

Esculeoside A and tomatine are two major steroidal alkaloids in tomato fruit (Solanum lycopersicum) that exhibit anti-inflammatory, anticancer, and anti-hyperlipidemia activities. Tomatine contained in immature tomato fruit is converted to esculeoside A as the fruit matures. To develop new tomato varieties based on the content analysis of functional secondary metabolites, 184 mutant lines were generated from the original cultivar (S. lycopersicum cv. Micro-Tom) by radiation breeding. Ultra-performance liquid chromatography coupled with evaporative light scattering detector was used to identify the mutant lines with good traits by analyzing tomatine and esculeoside A content. Compared with the original cultivar, candidates for highly functional cultivars with high esculeoside A content were identified in the mature fruit of the mutant lines. The mutant lines with low and high tomatine content at an immature stage were selected as edible cultivars due to toxicity reduction and as a source of tomatine with various pharmacological activities, respectively. During the process of ripening from green to red tomatoes, the rate of conversion of tomatine to esculeoside A was high in the green tomatoes with a low tomatine content, whereas green tomatoes with a high tomatine content exhibited a low conversion rate. Using methanol extracts prepared from unripe and ripe fruits of the original cultivar and its mutant lines and two major compounds, we examined their cytotoxicity against FaDu human hypopharynx squamous carcinoma cells. Only tomatine exhibited cytotoxicity with an IC50 value of 5.589 µM, whereas the other samples did not exhibit cytotoxicity. Therefore, radiation breeding represents a useful tool for developing new cultivars with high quality, and metabolite analysis is applicable for the rapid and objective selection of potential mutant lines.

10.
Plant Cell Rep ; 30(2): 217-29, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20978766

RESUMEN

Plants in the family Solanaceae are used as model systems in comparative and evolutionary genomics. The complete chloroplast genomes of seven solanaceous species have been sequenced, including tobacco, potato and tomato, but not peppers. We analyzed the complete chloroplast genome sequence of the hot pepper, Capsicum annuum. The pepper chloroplast genome was 156,781 bp in length, including a pair of inverted repeats (IR) of 25,783 bp. The content and the order of 133 genes in the pepper chloroplast genome were identical to those of other solanaceous plastomes. To characterize pepper plastome sequence, we performed comparative analysis using complete plastome sequences of pepper and seven solanaceous plastomes. Frequency and contents of large indels and tandem repeat sequences and distribution pattern of genome-wide sequence variations were investigated. In addition, a phylogenetic analysis using concatenated alignments of coding sequences was performed to determine evolutionary position of pepper in Solanaceae. Our results revealed two distinct features of pepper plastome compared to other solanaceous plastomes. Firstly, large indels, including insertions on accD and rpl20 gene sequences, were predominantly detected in the pepper plastome compared to other solanaceous plastomes. Secondly, tandem repeat sequences were particularly frequent in the pepper plastome. Taken together, our study represents unique features of evolution of pepper plastome among solanaceous plastomes.


Asunto(s)
Capsicum/genética , Cloroplastos/genética , Variación Genética , Genoma del Cloroplasto/genética , Genoma de Planta/genética , Mutagénesis Insercional , Eliminación de Secuencia , Secuencias Repetidas en Tándem , Secuencia de Bases , Evolución Biológica , ADN de Cloroplastos/genética , ADN de Plantas/genética , Genes de Plantas , Genómica/métodos , Mutación INDEL , Secuencias Invertidas Repetidas , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Solanum tuberosum/genética
11.
Plants (Basel) ; 10(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445585

RESUMEN

The irradiation of dry seeds is the most widely-used irradiation method for improving seed-propagated crops; however, the irradiation of other tissues also has useful effects. The irradiation of plant reproductive organs, rather than seeds, for mutation breeding has advantages, such as producing non-chimeric progeny. However, the mutation frequency and spectrum produced using this method have not been analyzed on a genome-wide level. We performed a genotype-by-sequencing analysis to determine the frequencies of single-base substitutions and small (1-2 bp) insertions and deletions in hot pepper (Capsicum annuum L.) plants derived from crosses using gamma-irradiated female or male gametophytes. The progeny of irradiated gametophytes showed similar or higher DNA mutation frequencies, which were dependent on the irradiation dose and irradiated tissue, and less biased single base substitutions than progeny of irradiated seeds. These characteristics were expected to be beneficial for development of mutation population with a high frequency of small DNA mutations and performing reverse-genetics-based mutation screening. We also examined the possible use of this irradiation method in manipulating the meiotic recombination frequency; however, no statistically significant increase was detected. Our results provide useful information for further research and breeding using irradiated gametophytes.

12.
Front Plant Sci ; 12: 721512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858446

RESUMEN

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of Arabidopsis were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15-21 DAS) and late (∼21-23 DAS) pre-flowering developmental stages using the physiological characteristics of the Arabidopsis plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17-21 DAS). This was confirmed using an additional biological experiment (P < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.

13.
Methods Mol Biol ; 2250: 195-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33900606

RESUMEN

Transposable elements (TEs) are ubiquitous repetitive components of eukaryotic organisms that show mobility in the genome against diverse stresses. TEs contribute considerably to the size, structure, and plasticity of genomes and also play an active role in genome evolution by helping their hosts adapt to novel conditions by conferring useful characteristics. We developed a simple and rapid method for investigation of genetic mobility and diversity among TEs in combination with a target region amplification polymorphism (TE-TRAP) marker system in gamma-irradiated sorghum mutants. The TE-TRAP marker system reveals a high level of genetic diversity, which provides a useful marker resource for genetic mobility research.


Asunto(s)
Elementos Transponibles de ADN/genética , Variación Genética , Genoma de Planta/genética , Sorghum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , ADN de Plantas/análisis , ADN de Plantas/genética , Electroforesis/métodos , Evolución Molecular , Tamaño del Genoma/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo Genético
14.
Plants (Basel) ; 10(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669039

RESUMEN

The response to gamma irradiation varies among plant species and is affected by the total irradiation dose and dose rate. In this study, we examined the immediate and ensuing responses to acute and chronic gamma irradiation in rice (Oryza sativa L.). Rice plants at the tillering stage were exposed to gamma rays for 8 h (acute irradiation) or 10 days (chronic irradiation), with a total irradiation dose of 100, 200, or 300 Gy. Plants exposed to gamma irradiation were then analyzed for DNA damage, oxidative stress indicators including free radical content and lipid peroxidation, radical scavenging, and antioxidant activity. The results showed that all stress indices increased immediately after exposure to both acute and chronic irradiation in a dose-dependent manner, and acute irradiation had a greater effect on plants than chronic irradiation. The photosynthetic efficiency and growth of plants measured at 10, 20, and 30 days post-irradiation decreased in irradiated plants, i.e., these two parameters were more severely affected by acute irradiation than by chronic irradiation. In contrast, acutely irradiated plants produced seeds with dramatically decreased fertility rate, and chronically irradiated plants failed to produce fertile seeds, i.e., reproduction was more severely affected by chronic irradiation than by acute irradiation. Overall, our findings suggest that acute gamma irradiation causes instantaneous and greater damage to plant physiology, whereas chronic gamma irradiation causes long-term damage, leading to reproductive failure.

15.
Int J Radiat Biol ; 97(11): 1624-1629, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34402731

RESUMEN

PURPOSE: Proton ions are expected to be used as a discriminative radiation source to induce different kinds of mutations than those produced by γ-rays and carbon ions; however, there is little systemic information about radiosensitivity in plants. MATERIALS AND METHODS: We analyzed the LD30, LD50, and RD50 values in response to proton ions and γ-rays using 20 plant species. Plant seeds were irradiated, and growth responses were measured one month after planting, except for cymbidium, for which in vitro rhizomes were irradiated. The rhizomes were analyzed at six and nine months after subculturing. RESULTS: Resistance to proton ions and γ-rays was observed in Chinese cabbage, watermelon, and melon, while Japanese atractylodes, naked barley, and lentil were susceptible. Plants belonging to the Brassicaceae and Cucurbitaceae families were highly resistant to radiation, and plants belonging to the Compositae and Poaceae families were highly susceptible. In addition, plants with genome sizes greater than 8,000 Mbp were highly sensitive to radiation, but there was no clear relationship between radiosensitivity and genome size in plants with genomes smaller than 2,500 Mbp. CONCLUSIONS: The biological effectiveness of proton ions was greater than that of γ-rays in 16 plant species, indicating that they could be used as a discriminative radiation source to induce mutations compared with γ-rays.


Asunto(s)
Rayos gamma , Protones , Relación Dosis-Respuesta en la Radiación , Dosificación Letal Mediana , Mutación
16.
Front Plant Sci ; 12: 752108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777430

RESUMEN

Protons may have contributed to the evolution of plants as a major component of cosmic-rays and also have been used for mutagenesis in plants. Although the mutagenic effect of protons has been well-characterized in animals, no comprehensive phenotypic and genomic analyses has been reported in plants. Here, we investigated the phenotypes and whole genome sequences of Arabidopsis M2 lines derived by irradiation with proton beams and gamma-rays, to determine unique characteristics of proton beams in mutagenesis. We found that mutation frequency was dependent on the irradiation doses of both proton beams and gamma-rays. On the basis of the relationship between survival and mutation rates, we hypothesized that there may be a mutation rate threshold for survived individuals after irradiation. There were no significant differences between the total mutation rates in groups derived using proton beam or gamma-ray irradiation at doses that had similar impacts on survival rate. However, proton beam irradiation resulted in a broader mutant phenotype spectrum than gamma-ray irradiation, and proton beams generated more DNA structural variations (SVs) than gamma-rays. The most frequent SV was inversion. Most of the inversion junctions contained sequences with microhomology and were associated with the deletion of only a few nucleotides, which implies that preferential use of microhomology in non-homologous end joining was likely to be responsible for the SVs. These results show that protons, as particles with low linear energy transfer (LET), have unique characteristics in mutagenesis that partially overlap with those of low-LET gamma-rays and high-LET heavy ions in different respects.

17.
Genome ; 53(12): 1029-40, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21164536

RESUMEN

Single nucleotide polymorphisms (SNPs) derived from both nuclear and cytoplasmic DNA sequences were developed to identify distinct species of Capsicum. Species identification was achieved by detecting allelic variations of these type of markers via high resolution melting analysis (HRM). We used the HRM polymorphisms of COSII markers and the Waxy gene from the nuclear sequence, in addition to the intergenic spacer between trnL and trnF from cytoplasmic DNA as our SNP markers. A total of 31 accessions of Capsicum, representing six species, were analyzed using this method. As single markers were insufficient for identifying Capsicum species, combinations of all markers unambiguously identified all six. A phylogeny based on the SNP markers was consistent with the current taxonomy of Capsicum species. These observations demonstrate that the markers developed in this study are useful for rapid identification of new germplasm for management of Capsicum species.


Asunto(s)
Capsicum/genética , Marcadores Genéticos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Secuencia de Bases , Capsicum/clasificación , ADN de Plantas/genética , Genes de Plantas/genética , Datos de Secuencia Molecular , Filogenia , Plastidios/genética , Reacción en Cadena de la Polimerasa/métodos , Alineación de Secuencia , Especificidad de la Especie
18.
Plants (Basel) ; 9(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349236

RESUMEN

The effects of radiation dosages on plant species are quantitatively presented as the lethal dose or the dose required for growth reduction in mutation breeding. However, lethal dose and growth reduction fail to provide dynamic growth behavior information such as growth rate after irradiation. Irradiated seeds of Arabidopsis were grown in an environmentally controlled high-throughput phenotyping (HTP) platform to capture growth images that were analyzed with machine learning algorithms. Analysis of digital phenotyping data revealed unique growth patterns following treatments below LD50 value at 641 Gy. Plants treated with 100-Gy gamma irradiation showed almost identical growth pattern compared with wild type; the hormesis effect was observed >21 days after sowing. In 200 Gy-treated plants, a uniform growth pattern but smaller rosette areas than the wild type were seen (p < 0.05). The shift between vegetative and reproductive stages was not retarded by irradiation at 200 and 300 Gy although growth inhibition was detected under the same irradiation dose. Results were validated using 200 and 300 Gy doses with HTP in a separate study. To our knowledge, this is the first study to apply a HTP platform to measure and analyze the dosage effect of radiation in plants. The method enabled an in-depth analysis of growth patterns, which could not be detected previously due to a lack of time-series data. This information will improve our knowledge about the effects of radiation in model plant species and crops.

19.
Plants (Basel) ; 9(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847097

RESUMEN

DNA methylation plays important roles in the regulation of gene expression and maintenance of genome stability in many organisms, including plants. In this study, we treated rice with gamma rays (GRs) and DNA methyltransferase inhibitors (DNMTis) to induce variations in DNA methylation and evaluated epigenetic diversity using methylation-sensitive amplified polymorphism (MSAP) and transposon methylation display (TMD) marker systems. Comparative and integrated analyses of the data revealed that both GRs and DNMTis alone have epimutagenic effects and that combined treatment enhanced these effects. Calculation of methylation rates based on band scoring suggested that both GRs and DNMTis induce epigenetic diversity by demethylation in a dose-dependent manner, and combined treatment can induce variations more synergistically. The difference in the changes in full and hemi-methylation rates between MSAP and TMD is presumed to be caused by the different genomic contexts of the loci amplified in the two marker systems. Principal coordinate, phylogenic, and population structure analyses commonly yielded two clusters of individuals divided by DNMTi treatment. The clustering pattern was more apparent in TMD, indicating that DNMTis have a stronger effect on hypermethylated repetitive regions. These findings provide a foundation for understanding epigenetic variations induced by GRs and DNMTis and for epigenetic mutation breeding.

20.
Int J Radiat Biol ; 96(4): 545-551, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31852368

RESUMEN

Purpose: Ionizing radiation has been used for developing new cultivars of diverse plant species, including Cymbidium orchid species. The effects of the total dose on mutation induction have been investigated; however, there is relatively little research on the influence of the dose rate or irradiation duration.Materials and methods: Thus, we analyzed the effects of the total dose and irradiation duration on the growth of Cymbidium hybrid RB001 protocorm-like bodies (PLBs). We completed a genotyping-by-sequencing analysis to compare the induced SNPs among five γ-irradiated populations with similar growth responses (LD50) to γ-rays.Results: The optimal time to assess the effects of the γ-irradiation was at 6 months after the treatment. On the basis of the survival rate of γ-irradiated PLBs, the optimal doses (LD50) for each irradiation duration were estimated: 1 h, 16.1 Gy; 4 h, 23.6 Gy; 8 h, 37.9 Gy; 16 h, 37.9 Gy; and 24 h, 40.0 Gy. The estimated optimal doses were duration-dependent at irradiation durations shorter than 8 h, but not at irradiation durations exceeding 8 h. A SNP comparison revealed a lack of significant differences among the mutations induced by γ-irradiations.Conclusions: These results indicate the irradiation duration affects PLB growth in response to γ-rays. Moreover, the mutations induced by a short-term treatment may be similar to those induced by a treatment over a longer period.


Asunto(s)
Orchidaceae/efectos de la radiación , Polimorfismo de Nucleótido Simple , Animales , Rayos gamma , Dosificación Letal Mediana , Mutación , Orchidaceae/genética , Orchidaceae/crecimiento & desarrollo , Dosis de Radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA