Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32839188

RESUMEN

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Toxina del Cólera/inmunología , Infecciones por Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Animales , Aotidae , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/prevención & control , Cobayas , Ratones , Proteínas Recombinantes de Fusión/inmunología
2.
Traffic ; 16(6): 572-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690058

RESUMEN

How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis , Microtúbulos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Toxina del Cólera/metabolismo , Clatrina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Unión Proteica , Receptores de Transferrina/metabolismo
4.
Biophys J ; 111(12): 2547-2550, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27914621

RESUMEN

Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.


Asunto(s)
Toxina del Cólera/metabolismo , Glicoesfingolípidos/química , Glicoesfingolípidos/metabolismo , Microdominios de Membrana/metabolismo , Animales , Células COS , Chlorocebus aethiops , Transporte de Proteínas
5.
Antimicrob Agents Chemother ; 60(12): 7224-7235, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27671066

RESUMEN

We report a case of ceftriaxone treatment failure for bacteremia caused by Salmonella enterica subsp. enterica serovar Typhimurium, due to the in vivo acquisition of a blaCTX-M-27-encoding IncFII group transmissible plasmid. The original ß-lactamase-susceptible isolate ST882S was replaced by the resistant isolate ST931R during ceftriaxone treatment. After relapse, treatment was changed to ciprofloxacin, and the patient recovered. Isolate ST931R could transfer resistance to Escherichia coli at 37°C. We used whole-genome sequencing of ST882S and ST931R, the E. coli transconjugant, and isolated plasmid DNA to unequivocally show that ST882S and ST931R had identical chromosomes, both having 206 identical single-nucleotide polymorphisms (SNPs) versus S Typhimurium 14028s. We assembled a complete circular genome for ST931R, to which ST882S reads mapped with no SNPs. ST882S and ST931R were isogenic except for the presence of three additional plasmids in ST931R. ST931R and the E. coli transconjugant were ceftriaxone resistant due to the presence of a 60.5-kb IS26-flanked, blaCTX-M-27-encoding IncFII plasmid. Compared to 14082s, ST931R has almost identical Gifsy-1, Gifsy-2, and ST64B prophages, lacks Gifsy-3, and instead carries a unique Fels-2 prophage related to that found in LT2. ST882S and ST931R both had a 94-kb virulence plasmid showing >99% identity with pSLT14028s and a cryptic 3,904-bp replicon; ST931R also has cryptic 93-kb IncI1 and 62-kb IncI2 group plasmids. To the best of our knowledge, in vivo acquisition of extended-spectrum ß-lactamase resistance by S Typhimurium and blaCTX-M-27 genes in U.S. isolates of Salmonella have not previously been reported.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Ceftriaxona/uso terapéutico , Proteínas de Escherichia coli/genética , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , beta-Lactamasas/genética , Anciano , Bacteriemia/microbiología , Ciprofloxacina/uso terapéutico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Femenino , Genoma Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Profagos/genética , Infecciones por Salmonella/microbiología , Insuficiencia del Tratamiento
6.
Mol Microbiol ; 94(4): 898-912, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25257027

RESUMEN

The catalytic A1 subunit of cholera toxin (CTA1) has a disordered structure at 37°C. An interaction with host factors must therefore place CTA1 in a folded conformation for the modification of its Gsα target which resides in a lipid raft environment. Host ADP-ribosylation factors (ARFs) act as in vitro allosteric activators of CTA1, but the molecular events of this process are not fully characterized. Isotope-edited Fourier transform infrared spectroscopy monitored ARF6-induced structural changes to CTA1, which were correlated to changes in CTA1 activity. We found ARF6 prevents the thermal disordering of structured CTA1 and stimulates the activity of stabilized CTA1 over a range of temperatures. Yet ARF6 alone did not promote the refolding of disordered CTA1 to an active state. Instead, lipid rafts shifted disordered CTA1 to a folded conformation with a basal level of activity that could be further stimulated by ARF6. Thus, ARF alone is unable to activate disordered CTA1 at physiological temperature: additional host factors such as lipid rafts place CTA1 in the folded conformation required for its ARF-mediated activation. Interaction with ARF is required for in vivo toxin activity, as enzymatically active CTA1 mutants that cannot be further stimulated by ARF6 fail to intoxicate cultured cells.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Toxina del Cólera/metabolismo , Pliegue de Proteína , Factor 6 de Ribosilación del ADP , Regulación Alostérica , Toxina del Cólera/química , Microdominios de Membrana/metabolismo , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Temperatura
7.
PLoS Pathog ; 7(9): e1002228, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931548

RESUMEN

Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-ß topology. N-terminal ß-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD(N0) interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/genética , Proteínas de la Membrana/química , Vibrio cholerae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Péptido Hidrolasas/metabolismo , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , Vibrio cholerae/metabolismo
9.
Biochemistry ; 49(41): 8839-46, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20839789

RESUMEN

The catalytic A1 subunit of cholera toxin (CTA1) is an ADP-ribosyltransferase with three distinct subdomains: CTA1(1) forms the catalytic core of the toxin, CTA1(2) is an extended linker between CTA1(1) and CTA1(3), and CTA1(3) is a compact globular region. CTA1 crosses the endoplasmic reticulum (ER) membrane to enter the cytosol where it initiates a cytopathic effect. Toxin translocation involves ER-associated degradation (ERAD), a quality control system that exports misfolded proteins from the ER to the cytosol. At the physiological temperature of 37 °C, the free CTA1 subunit is in a partially unfolded conformation that triggers its ERAD-mediated translocation to the cytosol. Thus, the temperature sensitivity of CTA1 structure is an important determinant of its function. Here, we examined the contribution of CTA1 subdomain structure to the thermal unfolding of CTA1. Biophysical measurements demonstrated that the CTA1(1) subdomain is thermally unstable and that the CTA1(2) subdomain provides a degree of conformational stability to CTA1(1). The CTA1(3) subdomain does not affect the overall stability of CTA1, but the thermal unfolding of CTA1 appears to begin with a local loss of structure in the CTA1(3) subdomain: glycerol and acidic pH both inhibited the thermal disordering of full-length CTA1 but not the disordering of a CTA1 construct lacking the A1(3) subdomain. These observations provide mechanistic insight regarding the thermal unfolding of CTA1, an event which facilitates its subsequent translocation to the cytosol.


Asunto(s)
Toxina del Cólera/química , Calor , Pliegue de Proteína , Toxina del Cólera/metabolismo , Estabilidad de Enzimas , Estructura Terciaria de Proteína
10.
PLoS One ; 15(3): e0230138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176708

RESUMEN

Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.


Asunto(s)
Toxina del Cólera , Escherichia coli Enterotoxigénica , Vacunas contra Escherichia coli , Proteínas Fimbrias , Proteínas Recombinantes de Fusión , Animales , Femenino , Ratones , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Toxina del Cólera/genética , Toxina del Cólera/inmunología , Toxina del Cólera/metabolismo , Escherichia coli Enterotoxigénica/inmunología , Vacunas contra Escherichia coli/inmunología , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Proteínas Fimbrias/metabolismo , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo
11.
Infect Immun ; 76(4): 1476-84, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18212085

RESUMEN

Cholera toxin (CT) moves from the plasma membrane (PM) of host cells to the endoplasmic reticulum (ER) by binding to the lipid raft ganglioside GM(1). The homopentomeric B-subunit of the toxin can bind up to five GM(1) molecules at once. Here, we examined the role of polyvalent binding of GM(1) in CT action by producing chimeric CTs that had B-subunits with only one or two normal binding pockets for GM(1). The chimeric toxins had attenuated affinity for binding to host cell PM, as expected. Nevertheless, like wild-type (wt) CT, the CT chimeras induced toxicity, fractionated with detergent-resistant membranes extracted from toxin-treated cells, displayed restricted diffusion in the plane of the PM in intact cells, and remained bound to GM(1) when they were immunoprecipitated. Thus, binding normally to two or perhaps only one GM(1) molecule is sufficient for association with lipid rafts in the PM and toxin action. The chimeric toxins, however, were much less potent than wt toxin, and they entered the cell by endocytosis more slowly, suggesting that clustering of GM(1) molecules by the B-subunit enhances the efficiency of toxin uptake and perhaps also trafficking to the ER.


Asunto(s)
Toxina del Cólera/genética , Toxina del Cólera/metabolismo , Endocitosis/fisiología , Gangliósido G(M1)/metabolismo , Línea Celular , Gangliósido G(M1)/química , Humanos , Microdominios de Membrana/metabolismo , Mutación , Unión Proteica , Subunidades de Proteína , Transporte de Proteínas
12.
Mol Biol Cell ; 14(12): 4783-93, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-13679513

RESUMEN

Cholera toxin (CT) travels from the plasma membrane of intestinal cells to the endoplasmic reticulum (ER) where a portion of the A-subunit, the A1 chain, crosses the membrane into the cytosol to cause disease. A related toxin, LTIIb, binds to intestinal cells but does not cause toxicity. Here, we show that the B-subunit of CT serves as a carrier for the A-subunit to the ER where disassembly occurs. The B-subunit binds to gangliosides in lipid rafts and travels with the ganglioside to the ER. In many cells, LTIIb follows a similar pathway, but in human intestinal cells it binds to a ganglioside that fails to associate with lipid rafts and it is sorted away from the retrograde pathway to the ER. Our results explain why LTIIb does not cause disease in humans and suggest that gangliosides with high affinity for lipid rafts may provide a general vehicle for the transport of toxins to the ER.


Asunto(s)
Toxinas Bacterianas/metabolismo , Toxina del Cólera/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Gangliósidos/metabolismo , Microdominios de Membrana/metabolismo , Animales , Transporte Biológico/fisiología , Células Cultivadas , Clonación Molecular , Endocitosis , Aparato de Golgi , Humanos , Mucosa Intestinal/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo
14.
Pathog Dis ; 74(3)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26755534

RESUMEN

Heat-labile enterotoxins (LT) of enterotoxigenic Escherichia coli (ETEC) are structurally and functionally related to cholera toxin (CT). LT-I toxins are plasmid-encoded and flanked by IS elements, while LT-II toxins of type II ETEC are chromosomally encoded with flanking genes that appear phage related. Here, I determined the complete genomic sequence of the locus for the LT-IIa type strain SA53, and show that the LT-IIa genes are encoded by a 51 239 bp lambdoid prophage integrated at the rac locus, the site of a defective prophage in E. coli K12 strains. Of 50 LT-IIa and LT-IIc, 46 prophages also encode one member of two novel two-gene ADP-ribosyltransferase toxin families that are both related to pertussis toxin, which I named eplBA or ealAB, respectively. The eplBA and ealAB genes are syntenic with the Shiga toxin loci in their lambdoid prophages of the enteric pathogen enterohemorrhagic E. coli. These novel AB(5) toxins show pertussis-toxin-like activity on tissue culture cells, and like pertussis toxin bind to sialic acid containing glycoprotein ligands. Type II ETEC are the first mucosal pathogens known to simultaneously produce two ADP-ribosylating toxins predicted to act on and modulate activity of both stimulatory and inhibitory alpha subunits of host cell heterotrimeric G-proteins.


Asunto(s)
Toxinas Bacterianas/genética , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/patogenicidad , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Toxina del Pertussis/genética , Profagos/genética , ADP Ribosa Transferasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO , Línea Celular , Cricetulus , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
17.
Genome Announc ; 4(4)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516504

RESUMEN

We present here the complete genomic sequence of a rifampin-resistant derivative of the Escherichia coli K-12 laboratory strain ER1821, engineered to be deficient in all known restriction systems, making it suitable for generating unbiased libraries from organisms with non-K-12 methylation patterns. The ER1821R genome is most closely related to that of DH1, another popular cloning strain (both derived from MM294), but is deleted for the e14 prophage (McrA(-)) and the immigration control (McrBC(-) EcoKI R(-) M(-) Mrr(-)) loci.

20.
Toxins (Basel) ; 7(3): 919-35, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25793724

RESUMEN

Pathogenesis of cholera diarrhea requires cholera toxin (CT)-mediated adenosine diphosphate (ADP)-ribosylation of stimulatory G protein (Gsα) in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP) differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging "active-site" and "activation" loops in inactive CTA1) and an ADP ribosylating turn-turn (ARTT) motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino)-guanidine (DEABAG), a small substrate predicted to fit into the CTA1 active site). Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα.


Asunto(s)
Toxina del Cólera/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Dominio Catalítico , Línea Celular , Toxina del Cólera/metabolismo , Análisis Mutacional de ADN , Variación Genética , Ratones , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA