Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Comput Biol ; 18(1): e1009678, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051172

RESUMEN

Sugars are crucial components in biosystems and industrial applications. In aqueous environments, the natural state of short saccharides or charged glycosaminoglycans is floating and wiggling in solution. Therefore, tools to characterize their structure in a native aqueous environment are crucial but not always available. Here, we show that a combination of Raman/ROA and, on occasions, NMR experiments with Molecular Dynamics (MD) and Quantum Mechanics (QM) is a viable method to gain insights into structural features of sugars in solutions. Combining these methods provides information about accessible ring puckering conformers and their proportions. It also provides information about the conformation of the linkage between the sugar monomers, i.e., glycosidic bonds, allowing for identifying significantly accessible conformers and their relative abundance. For mixtures of sugar moieties, this method enables the deconvolution of the Raman/ROA spectra to find the actual amounts of its molecular constituents, serving as an effective analytical technique. For example, it allows calculating anomeric ratios for reducing sugars and analyzing more complex sugar mixtures to elucidate their real content. Altogether, we show that combining Raman/ROA spectroscopies with simulations is a versatile method applicable to saccharides. It allows for accessing many features with precision comparable to other methods routinely used for this task, making it a viable alternative. Furthermore, we prove that the proposed technique can scale up by studying the complicated raffinose trisaccharide, and therefore, we expect its wide adoption to characterize sugar structural features in solution.


Asunto(s)
Espectrometría Raman/métodos , Azúcares/análisis , Azúcares/química , Agua/química , Biología Computacional , Simulación de Dinámica Molecular , Rotación Óptica
2.
Phys Chem Chem Phys ; 24(16): 9619-9625, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35403645

RESUMEN

Vibrational circular dichroism (VCD) and Raman optical activity (ROA) are two spectroscopic techniques that are sensitive towards the conformational behaviour of molecules, and are often complementary herein. In this work we pursue the determination of the conformational ensemble of the antibiotic glycopeptide vancomycin in DMSO through comparison of experimental and computational spectra, both for VCD and ROA. ROA is found to be highly suitable for the task, identifying an ensemble that strongly resembles the NMR conformation. In the case of VCD, however, a too high sensitivity of the intensities with respect to minor conformational changes hampers a reliable conformational analysis. Whence attempting to improve the match between the VCD experiment and calculations by any means - e.g., by inducing minor conformational changes or including solvent effects in the calculations - we show that there is the risk of going down the rabbit hole. In conclusion, this work contributes to the broader understanding of where, when and how VCD and ROA can be deployed as techniques for conformational analysis.


Asunto(s)
Dimetilsulfóxido , Vancomicina , Antibacterianos , Dicroismo Circular , Rotación Óptica , Espectrometría Raman/métodos
3.
Phys Chem Chem Phys ; 22(32): 18014-18024, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32756630

RESUMEN

Artemisinin and two of its derivatives, dihydroartemisinin and artesunate, which are front line drugs against malaria, were investigated using Raman optical activity (ROA) and vibrational circular dichroism (VCD) experiments, both supported by density functional theory (DFT) level calculations. The experimental techniques combined with DFT calculations could show that dihydroartemisinin was present as an epimeric mixture in solution. In addition, an approximation of the epimeric ratio could be extracted which was in agreement with the ratio obtained by 1H-NMR spectroscopy. The current study also demonstrates that both ROA and VCD are able to assign the correct absolute configuration (AC) of artemisinin and artesunate out of all their possible diastereomers without any explicit knowledge on their correct stereochemistry and accentuates the synergetic effect between ROA and VCD in AC determination.


Asunto(s)
Artemisininas/química , Dicroismo Circular , Rotación Óptica , Espectrometría Raman , Espectroscopía de Resonancia Magnética
4.
Chembiochem ; 20(6): 770-777, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30451361

RESUMEN

The sensitivity of Raman optical activity (ROA) towards small conformational changes is explored by tracking the structural changes in an intrinsically disordered protein-phosvitin-induced by different concentrations of crowding agent. It is shown that ROA is capable of tracking small conformational changes involving ß-sheet and α-helical secondary structural properties of the protein. Furthermore, it is indicated that the influences of the crowding agents employed, Ficoll 70 and dextran 70, on the structural properties of phosvitin differ significantly, with the structural changes induced by the presence of Ficoll 70 being more pronounced and already being visible at a lower concentration. The data also suggest that some spectral changes do not arise from a change in the secondary structure of the protein, but are related to differences in interaction between the phosphorylated residues of the protein and the sugar-based crowding agent.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Fosvitina/química , Dextranos/química , Ficoll/química , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Espectrometría Raman
5.
Chemphyschem ; 20(1): 42-54, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30350435

RESUMEN

The Raman optical activity (ROA) spectra of proteins show distinct patterns arising from the secondary structure. It is generally believed that the spectral contributions of the side-chains largely cancel out because of their flexibility and the occurrence of many side-chains with different conformations. Yet, the influence of the side-chains on the ROA patterns assigned to different secondary structures is unknown. Here, the first systematic study of the influence of all amino acid side-chains on the ROA patterns is presented based on density functional theory (DFT) calculations of an extensive collection of peptide models that include many different side-chain and secondary structure conformations. It was shown that the contributions of the side-chains to a large extent average out with conformational flexibility. However, specific side-chain conformations can have significant contributions to the ROA patterns. It was also shown that α-helical structure is very sensitive to both the exact backbone conformation and the side-chain conformation. Side-chains with χ1 ≈-60° generate ROA patterns alike those in experiment. Aromatic side-chains strongly influence the amide III ROA patterns. Because of the huge structural sensitivity of ROA, the spectral patterns of proteins arise from extensive conformational averaging of both the backbone and the side-chains. The averaging results in the fine spectral details and relative intensity differences observed in experimental spectra.


Asunto(s)
Aminoácidos/química , Proteínas/química , Bases de Datos de Proteínas , Rotación Óptica , Estructura Secundaria de Proteína , Teoría Cuántica , Espectrometría Raman
6.
Chemphyschem ; 20(5): 695-705, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30688397

RESUMEN

Structural analysis of carbohydrates is a complicated endeavour, due to the complexity and diversity of the samples at hand. Herein, we apply a combined computational and experimental approach, employing molecular dynamics (MD) and density functional theory (DFT) calculations together with NMR and Raman optical activity (ROA) measurements, in the structural study of three mannobiose disaccharides, consisting of two mannoses with varying glycosidic linkages. The disaccharide structures make up the scaffold of high mannose glycans and are therefore important targets for structural analysis. Based on the MD population analysis and NMR, the major conformers of each mannobiose were identified and used as input for DFT analysis. By systematically varying the solvent models used to describe water interacting with the molecules and applying overlap integral analysis to the resulting calculational ROA spectra, we found that a full quantum mechanical/molecular mechanical approach is required for an optimal calculation of the ROA parameters. Subsequent normal mode analysis of the predicted vibrational modes was attempted in order to identify possible marker bands for glycosidic linkages. However, the normal mode vibrations of the mannobioses are completely delocalised, presumably due to conformational flexibility in these compounds, rendering the identification of isolated marker bands unfeasible.

7.
Phys Chem Chem Phys ; 21(4): 1988-2005, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30633268

RESUMEN

Raman and specifically Raman optical activity (ROA) spectroscopy are very sensitive to the solution structure and conformation of biomolecules. Because of this strong conformational sensitivity, density functional theory (DFT) calculations are often used to get a better understanding of the experimentally observed spectral patterns. While e.g. for carbohydrate structure the water molecules that surround the solute have been demonstrated to be of vital importance to get accurate modelled ROA spectra, the effect of explicit water molecules on the calculated ROA patterns of peptides and proteins is less well studied. Here, the effect of protein backbone hydration was studied using DFT calculations of HCO-(l-Ala)5-NH2 in specific secondary structure conformations with different treatments of the solvation. The effect of the explicit water molecules on the calculated spectra mainly arises from the formation of hydrogen bonds with the amide C[double bond, length as m-dash]O and N-H groups. Hydrogen bonding of water with the C[double bond, length as m-dash]O group determines the shape and position of the amide I band. The C[double bond, length as m-dash]O bond length increases upon formation of C[double bond, length as m-dash]OH2O hydrogen bonds. The effect of the explicit water molecules on the amide III vibrations arises from hydrogen bonding of the solvent with both the C[double bond, length as m-dash]O and N-H group, but their contributions to this spectral region differ: geometrically, the formation of a C[double bond, length as m-dash]OH2O bond decreases the C-N bond length, while upon forming a N-HH2O hydrogen bond, the N-H bond length increases.


Asunto(s)
Amidas/química , Péptidos/química , Proteínas/química , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Espectrometría Raman , Vibración , Agua/química
8.
Phys Chem Chem Phys ; 21(14): 7367-7377, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30899920

RESUMEN

Glycosaminoglycans are linear carbohydrate polymers with essential roles in many biological processes. Chondroitin sulfate (CS) is one of them, omnipresent in living organisms as an important structural component of cartilage. It provides much of its resistance to compression. Despite its biological importance, little is still known about the relation of the CS structure to chemical composition and interaction with the environment. We therefore measured Raman and Raman optical activity (ROA) spectra of five CS samples of different biological origin and variously sulfated CS building blocks (GlcA, GalNAc, and basic disaccharide units) in a wide frequency range between 200 cm-1 and 1800 cm-1 and analyzed them with respect to specific structure marker bands. We show that ROA spectroscopy is sensitive to the conformational stability and rigidity of pyranose rings of saccharides, the orientation of sugar hydroxyl groups and the secondary structure of the CS's backbone. The CS secondary structure has been found to be quite stable, with a minor variation as a reaction to physicochemical parameters (concentration, pH, temperature, and the presence of cations). Larger changes were observed under chemical changes (sulfation) of the CS chain. ROA spectroscopy thus exhibited useful potential to study the structure of similar biopolymers.

9.
Biochemistry ; 57(41): 5989-5995, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30239196

RESUMEN

The effects of crowding, using the crowding agent Ficoll 70, and the presence of ß-synuclein on the fibrillation process of α-synuclein were studied by spectroscopic techniques, transmission electron microscopy, and thioflavin T assays. This combined approach, in which all techniques were applied to the same original sample, generated an unprecedented understanding of the effects of these modifying agents on the morphological properties of the fibrils. Separately, crowding gives rise to shorter mutually aligned fibrils, while ß-synuclein leads to branched, short fibrils. The combination of both effects leads to short, branched, mutually aligned fibrils. Moreover, it is shown that the nondestructive technique of vibrational circular dichroism is extremely sensitive to the length and the higher-order morphology of the fibrils.


Asunto(s)
Amiloide/química , alfa-Sinucleína/química , Sinucleína beta/química , Amiloide/ultraestructura , Benzotiazoles/química , Dicroismo Circular , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Estructura Cuaternaria de Proteína
10.
Chemphyschem ; 19(22): 3134-3143, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30204288

RESUMEN

ß-turns are essential for the structure and function of proteins. The spectroscopic technique Raman optical activity (ROA) has been suggested to be sensitive to such structural elements of proteins in solution. Three spectral features have been reported to mark ß-turns in protein ROA spectra: being a negative band at 1220 cm-1 , positive intensity around 1290 cm-1 and negative intensity around 1340-1380 cm-1 . In this work, density functional theory calculations demonstrated that these assignments are inaccurate as these spectral regions are not robust and sense the exact secondary structure surrounding the ß-turn as well. Furthermore, it was demonstrated that the amino acid side-chains affect the exact ROA patterns which can direct future research to perform a systematic analysis of the contributions of the side-chains.

11.
Phys Chem Chem Phys ; 19(12): 8575-8583, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28289743

RESUMEN

High glycine-tyrosine (HGT) proteins are an important constituent of the keratin associated proteins (KAPs) present in human hair. The glassy state physics of hair fibres are thought to be largely regulated by KAPs, which exist in an amorphous state and are readily affected by environmental conditions. However, there are no studies characterizing the individual KAPs. In this paper, we present the first step to fill this gap by computational modeling and experimental studies on a HGT protein, KAP8.1. In particular, we have modeled the three-dimensional structure of this 63-residue protein using homology information from an anti-freeze protein in snow flea. The model for KAP8.1 is characterized by four strands of poly-proline II (or PPII) type helical secondary structures, held together by two cysteine disulphide bridges. Computer simulations confirm the stability of the modelled structure and show that the protein largely samples the PPII and ß-sheet conformations during the molecular dynamics simulations. Spectroscopic studies including Raman, IR and vibrational circular dichroism have also been performed on synthesized KAP8.1. The experimental studies suggest that KAP8.1 is characterised by ß-sheet and PPII structures, largely consistent with the simulation studies. The model built in this work is a good starting point for further simulations to study in greater depth the glassy state physics of hair, including its water sorption isotherms, glass transition, and the effect of HGT proteins on KAP matrix plasticization. These results are a significant step towards our goal of understanding how the properties of hair can be affected and manipulated under different environmental conditions of temperature, humidity, ageing and small molecule additives.


Asunto(s)
Glicina/química , Queratinas/química , Modelos Moleculares , Tirosina/química , Animales , Simulación por Computador , Humanos , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína , Análisis Espectral
12.
Angew Chem Int Ed Engl ; 56(16): 4603-4607, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28334501

RESUMEN

The mechanical properties of agarose-derived hydrogels depend on the scaffolding of the polysaccharide network. To identify and quantify such higher order structure, we applied Raman optical activity (ROA)-a spectroscopic technique that is highly sensitive toward carbohydrates-on native agarose and chemically modified agarose in the gel phase for the first time. By spectral global fitting, we isolated features that change as a function of backbone carboxylation (28, 40, 50, 60, 80, and 93 %) from other features that remain unchanged. We assigned these spectral features by comparison to ROA spectra calculated for different oligomer models. We found a 60:40 ratio of double- and single-stranded α-helix in the highly rigid hydrogel of native agarose, while the considerably softer hydrogels made from carboxylated agarose use a scaffold of unpaired ß-strands.

13.
Phys Chem Chem Phys ; 18(46): 31757-31768, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27841400

RESUMEN

In the past few decades, Raman optical activity (ROA) spectroscopy has been shown to be very sensitive to the solution structure of peptides and proteins. A major and urgent challenge remains the need to make detailed assignments of experimental ROA patterns and relate those to the solution structure adopted by the protein. In the past few years, theoretical developments and implementations of ROA theory have made it possible to use quantum chemical methods to compute the ROA spectra of peptides. In this work, a large database of ROA spectra of peptide model structures describing the allowed backbone conformations of proteins was systematically calculated and used to make unprecedented detailed assignments of experimental ROA patterns to the conformational elements of the peptide in solution. By using a similarity index to compare an experimental spectrum to the database spectra (2902 theoretical spectra), the conformational preference of the peptide in solution can be assigned to a very specific region in the Ramachandran space. For six (poly)peptides this approach was validated and gives excellent agreement between experiment and theory. Additionally, hydrogen/deuterium exchanged structures and the conformational dependence of the amide modes in Raman spectra can be analysed using the new database. The excellent agreement between experiment and theory demonstrates the power of the newly developed database as a tool to study Raman and ROA patterns of peptides and proteins. The interpretation of experimental ROA patterns of different proteins published in the scientific literature is discussed based on the spectral trends observed in the database.


Asunto(s)
Péptidos/química , Espectrometría Raman/métodos , Bases de Datos de Proteínas , Enlace de Hidrógeno , Modelos Químicos , Estructura Secundaria de Proteína , Teoría Cuántica
14.
J Phys Chem A ; 120(11): 1908-16, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26928129

RESUMEN

The Raman optical activity spectra of the epimers ß-D-glucose and ß-D-galactose, two monosaccharides of biological importance, have been calculated using molecular dynamics combined with a quantum mechanics/molecular mechanics approach. Good agreement between theoretical and experimental spectra is observed for both monosaccharides. Full band assignments have been carried out, which has not previously been possible for carbohydrate epimers. For the regions where the spectral features are opposite in sign, the differences in the vibrational modes have been noted and ascribed to the band sign changes.


Asunto(s)
Espectrometría Raman/métodos , Simulación de Dinámica Molecular , Monosacáridos/química , Rotación Óptica , Teoría Cuántica
15.
Phys Chem Chem Phys ; 17(34): 21799-809, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26122177

RESUMEN

Besides its applications in bioenergy and biosynthesis, ß-d-xylose is a very simple monosaccharide that exhibits relatively high rigidity. As such, it provides the best basis to study the impact of different solvation shell radii on the computation of its Raman optical activity (ROA) spectrum. Indeed, this chiroptical spectroscopic technique provides exquisite sensitivity to stereochemistry, and benefits much from theoretical support for interpretation. Our simulation approach combines density functional theory (DFT) and molecular dynamics (MD) in order to efficiently account for the crucial hydration effects in the simulation of carbohydrates and their spectroscopic response predictions. Excellent agreement between the simulated spectrum and the experiment was obtained with a solvation radius of 10 Å. Vibrational bands have been resolved from the computed ROA data, and compared with previous results on different monosaccharides in order to identify specific structure-spectrum relationships and to investigate the effect of the solvation environment on the conformational dynamics of small sugars. From the comparison with ROA analytical results, a shortcoming of the classical force field used for the MD simulations has been identified and overcome, again highlighting the complementary role of experiment and theory in the structural characterisation of complex biomolecules. Indeed, due to unphysical puckering, a spurious ring conformation initially led to erroneous conformer ratios, which are used as weights for the averaging of the spectral average, and only by removing this contribution was near perfect comparison between theory and experiment achieved.


Asunto(s)
Simulación de Dinámica Molecular , Espectrometría Raman , Xilosa/química , Conformación de Carbohidratos
16.
Phys Chem Chem Phys ; 17(8): 6016-27, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25639972

RESUMEN

As two biologically and medically relevant monosaccharides, the constituents of hyaluronic acid, d-glucuronic acid and N-acetyl-d-glucosamine, constitute perfect test cases for the development of carbohydrate-specific structural methods. These two molecules have been analysed by Raman optical activity (ROA), a spectroscopic technique exhibiting exquisite sensitivity to stereochemistry. We show that it is possible to support the experiment with a simulation approach combining density functional theory (DFT) and molecular dynamics (MD), both using explicit solvation. Thus, we have gained new insight into the crucial hydration effects that contribute to the conformational dynamics of carbohydrates and managed to characterize in detail the poorly understood vibrational nature of this class of biomolecules. Experimental and calculated ROA spectra of these two molecules are reported and excellent agreement has been found. More specifically, comparison has been made with the more commonly used gas phase and implicitly solvated calculation approaches, which offer poor or zero modelling of solvent interactions. The calculated spectra have been used to resolve the structural origins of the observed bands, a current challenge in the study of carbohydrates due to a lack of definitive vibrational assignments. We report and analyse major features in the fingerprint region of the ROA spectra, with recurrent structural and spectral features between the two monosaccharides observed.


Asunto(s)
Acetilglucosamina/química , Ácido Glucurónico/química , Simulación de Dinámica Molecular , Teoría Cuántica , Espectrometría Raman
17.
Chemphyschem ; 15(11): 2252-4, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24719303

RESUMEN

Raman and Raman optical activity (ROA) spectroscopy are used to study the solution-phase structure of the glycan moiety of the protein ribonuclease B (RNase B). Spectral data of the intact glycan moiety of RNase B is obtained by subtracting high-quality spectral data of RNase A, the non-glycosylated form of the RNase, from the spectra of the glycoprotein. The remaining difference spectra are compared to spectra generated from Raman and ROA data of the constituent disaccharides of the RNase glycan, achieving convincing spectral overlap. The results show that ROA spectroscopy is able to extract detailed spectral data of the glycan moieties of proteins, provided that the non-glycosylated isoform is available. Furthermore, good comparison between the full glycan spectrum and the regenerated spectra based on the disaccharide data lends great promise to ROA as a tool for the solution-phase structural analysis of this structurally elusive class of biomolecules.


Asunto(s)
Polisacáridos/química , Ribonucleasas/química , Disacáridos/química , Isoformas de Proteínas/química , Ribonucleasa Pancreática/química , Soluciones/química , Espectrometría Raman/métodos
18.
Dalton Trans ; 52(10): 2976-2987, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36651272

RESUMEN

Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin belonging to the same lineage of the globin superfamily as globin-coupled sensors. A putative role in the scavenging of reactive nitrogen and oxygen species has been suggested as a possible adaptation mechanism of the host organism to different gaseous environments in the course of evolution. A combination of optical absorption, electronic circular dichroism (ECD), resonance Raman (rRaman), and electron paramagnetic resonance (EPR) reveal the unusual in vitro reaction of ferric MaPgb with nitrite. In contrast to other globins, a large excess of nitrite did not induce the formation of a nitriglobin form in MaPgb. Surprisingly, the addition of nitrite in mildly acidic pH led to the formation of a stable nitric-oxide ligated ferric form of the protein (MaPgb-NO). Furthermore, the 300-700 nm ECD spectrum of ferric MaPgb is for the first time reported and discussed, showing strong differences in the Soret and Q ellipticity compared to ferric myoglobin, in line with the unusually strongly ruffled haem group of MaPgb and the related quantum-mechanical admixture of the S = 5/2 and S = 3/2 state of its ferric form. The Soret and Q ellipticity change strongly upon formation of MaPgb-NO, revealing a significant effect of the nitric-oxide ligation on the haem group and pocket. The related changes in the asymmetric pyrrole half-ring stretching vibration modes observed in the rRaman spectra give experimental support to earlier theoretical models, in which an important role of the in-plane breathing modes of the haem was predicted for the stabilization of the binding of diatomic gases to MaPgb.


Asunto(s)
Hemo , Nitritos , Hemo/química , Methanosarcina/química , Methanosarcina/metabolismo , Ligandos , Globinas/química , Globinas/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Espectroscopía de Resonancia por Spin del Electrón
19.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140913, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004900

RESUMEN

Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.


Asunto(s)
Caenorhabditis elegans , Globinas , Animales , Caenorhabditis elegans/metabolismo , Nitritos/metabolismo , Hemo/metabolismo , Concentración de Iones de Hidrógeno
20.
J Inorg Biochem ; 238: 112063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370505

RESUMEN

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Hemo/química , Sistema Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA