RESUMEN
The parasitic flowering plant genus Cuscuta (dodder) is a parasitic weed that infects many important crops. Once it winds around the shoots of potential host plants and initiates the development of penetration organs, called haustoria, only a few plant species have been shown to deploy effective defense mechanisms to ward off Cuscuta parasitization. However, a notable exception is Solanum lycopersicum (tomato), which exhibits a local hypersensitive reaction when attacked by giant dodder (Cuscuta reflexa). Interestingly, the closely related wild desert tomato, Solanum pennellii, is unable to stop the penetration of its tissue by the C. reflexa haustoria. In this study, we observed that grafting a S. pennellii scion onto the rootstock of the resistant S. lycopersicum did not change the susceptibility phenotype of S. pennellii. This suggests that hormones, or other mobile substances, produced by S. lycopersicum do not induce a defense reaction in the susceptible tissue. Screening of a population of introgression lines harboring chromosome fragments from S. pennellii in the genome of the recurrent parent S. lycopersicum, revealed that most lines exhibit the same defense reaction as shown by the S. lycopersicum parental line. However, several lines showed different responses and exhibited either susceptibility, or cell death that extended considerably beyond the infection site. These lines will be valuable for the future identification of key loci involved in the perception of, and resistance to, C. reflexa and for developing strategies to enhance resistance to infection in crop species.
Asunto(s)
Cuscuta/fisiología , Malezas/fisiología , Solanum lycopersicum/fisiología , Solanum/fisiología , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fenotipo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Solanum/genética , Solanum/metabolismo , Especificidad de la EspecieRESUMEN
Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants.
Asunto(s)
Pared Celular/metabolismo , Cuscuta/metabolismo , Interacciones Huésped-Parásitos , Metabolómica , Parásitos/fisiología , Pelargonium/parasitología , Solanum lycopersicum/parasitología , Animales , Cuscuta/citología , Resistencia a la Enfermedad , Epítopos/metabolismo , Glucanos/metabolismo , Solanum lycopersicum/citología , Análisis por Micromatrices , Pectinas/metabolismo , Pelargonium/citología , Enfermedades de las Plantas/parasitología , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente , Polisacárido Liasas/metabolismo , Polisacáridos/metabolismo , Xilanos/metabolismoRESUMEN
Reliable, rapid and inexpensive detection of cellulolytic enzymes that can be used for a wide variety of biological and environmental samples are currently in high demand. Here, a new cellulase detection protocol is described that circumvents problems observed with popular agar-based methods by exploiting the ability of carboxymethylcellulose (CMC) to form gel-like surfaces on its own. These pure CMC-layers are sensitive to cellulolytic degradation and stainable by Gram's iodine without showing unwelcome reactions with other enzymes. The staining intensity negatively correlates with the enzyme activity and can be used for quantification. Cellulase activities are not obstructed by high sugar contents (e.g., in plant material) which limit the applicability of other quantification methods, making our new method particularly attractive for screening of plant extracts. A useful variant of this new method is its applicability to plant tissue prints for spatial mapping of the cellulolytic activity in a zymogram-like fashion.