Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nanotechnology ; 34(33)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164000

RESUMEN

We report on transport measurements in monolayer MoS2devices, close to the bottom of the conduction band edge. These devices were annealedin situbefore electrical measurements. This allows us to obtain good ohmic contacts at low temperatures, and to measure precisely the conductivity and mobility via four-probe measurements. The measured effective mobility up toµeff= 180 cm2V-1s-1is among the largest obtained in CVD-grown MoS2monolayer devices. These measurements show that electronic transport is of the insulating type forσ≤ 1.4e2/handn≤ 1.7 × 1012cm-2, and a crossover to a metallic regime is observed above those values. In the insulating regime, thermally activated transport dominates at high temperature (T> 120 K). At lower temperatures, conductivity is driven by Efros-Schklovkii variable range hopping in all measured devices, with a universal and constant hopping prefactor, that is a clear indication that hopping is not phonon-mediated. At higher carrier density, and high temperature, the conductivity is well modeled by the Boltzmann equation for a non-interacting Fermi gas, taking into account both phonon and impurity scatterings. Finally, even if this apparent metal-insulator transition can be explained by phonon-related phenomena at high temperature, the possibility of a genuine 2D MIT cannot be ruled out, as we can observe a clear power-law diverging localization length close to the transition, and a one-parameter scaling can be realized.

2.
Sens Actuators B Chem ; 3902023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37384350

RESUMEN

Oligonucleotide-functionalized graphene biosensors show immense promise for use as label-free point of care devices for detection of nucleic acid biomarkers at clinically relevant levels. Graphene-based nucleic acid sensors can be fabricated at low cost and have been shown to reach limits of detection in the attomolar range. Here we demonstrate devices functionalized with 22mer or 8omer DNA probes are capable of detecting full length genomic HIV-1 subtype B RNA, with a limit of detection below 1 aM in nuclease free water. We also show that these sensors are suitable for detection directly in Qiazol lysis reagent, again with a limit of detection below 1 aM for both 22mer and 8omer probes.

3.
Phys Rev Lett ; 127(8): 086805, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477425

RESUMEN

We present experimental evidence of electronic and optical interlayer resonances in graphene van der Waals heterostructure interfaces. Using the spectroscopic mode of a low-energy electron microscope (LEEM), we characterized these interlayer resonant states up to 10 eV above the vacuum level. Compared with nontwisted, AB-stacked bilayer graphene (AB BLG), an ≈0.2 Å increase was found in the interlayer spacing of 30° twisted bilayer graphene (30°-tBLG). In addition, we used Raman spectroscopy to probe the inelastic light-matter interactions. A unique type of Fano resonance was found around the D and G modes of the graphene lattice vibrations. This anomalous, robust Fano resonance is a direct result of quantum confinement and the interplay between discrete phonon states and the excitonic continuum.

4.
IEEE Sens J ; 21(5): 5758-5762, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33679256

RESUMEN

Several water-soluble variants of the human mu opioid receptor (wsMORs) have been designed and expressed, which enables the detection of opioids in the nM to pM range using biosensing platforms. The tools previously developed allowed us to investigate MOR and G-protein interactions in a lipid free system to demonstrate that the lipid bilayer might not be essential for the G-protein recognition and binding. In this study, we are able to investigate G-protein interactions with MOR by using graphene enabled technology, in a lipid free system, with a high sensitivity in a real time manner. A new wsMOR with the native C-terminus was designed, expressed and then immobilized on the surfaces of scalable graphene field effect transistor (GFET)-based biosensors, enabling the recording of wsMOR/G-protein interaction with an electronic readout. G-protein only interacts with the wsMOR in the presence of the native MOR C-terminus with a KA of 32.3±11.1 pM. The electronic readout of such interaction is highly reproducible with little variance across 50 devices in one biosensor array. For devices with receptors that do not have the native C-terminus, no significant electronic response was observed in the presence of G-protein, indicating an absence of interaction. These findings reveal that lipid environment is not essential for the G-protein interaction with MOR, however, the C-terminus of MOR is essential for G-protein recognition and high affinity binding. A system to detect MOR-G protein interaction is developed. wsMOR-G2_Cter provides a novel tool to investigate the role of C terminus in the signaling pathway.

5.
Nano Lett ; 19(8): 5496-5505, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31267757

RESUMEN

Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.

6.
Nanotechnology ; 31(10): 105302, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31747649

RESUMEN

Two-dimensional (2D) van der Waals superlattices comprised of two stacked monolayer materials have attracted significant interest as platforms for novel optoelectronic and structural behavior. Although studies are focused on superlattice fabrication, less effort has been given to the nanoscale patterning and structural modification of these systems. In this report, we demonstrate the localized layer-by-layer thinning and formation of nanopores/defects in 2D superlattices, such as stacked MoS2-WS2 van der Waals heterostructures and chemical vapor deposited bilayer WSe2, using aberration-corrected scanning transmission electron microscopy (STEM). Controlled electron beam irradiation is used to locally thin superlattices by removing the bottom layer of atoms, followed by defect formation through ablation of the second layer of atoms. The resulting defects exhibit atomically-sharp pore edges with tunable diameters down to 0.6 nm. Structural periodicities and focused STEM irradiation are also utilized to form close-packed nanopore arrays in superlattices with varying twist angles and commensurability. Applying these methods and mechanisms provides a forward approach in the atomic-scale patterning of stacked 2D nanodevices.

7.
Nano Lett ; 18(2): 957-963, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29376383

RESUMEN

Active tunability of photonic resonances is of great interest for various applications such as optical switching and modulation based on optoelectronic materials. Manipulation of charged excitons in atomically thin transition metal dichalcogenides (TMDCs) like monolayer MoS2 offers an unexplored route for diverse functionalities in optoelectronic nanodevices. Here, we experimentally demonstrate the dynamic photochemical and optoelectronic control of the photonic crystal Fano resonances by optical and electrical tuning of monolayer MoS2 refractive index via trions without any chemical treatment. The strong spatial and spectral overlap between the photonic Fano mode and the active MoS2 monolayer enables efficient modulation of the Fano resonance. Our approach offers new directions for potential applications in the development of optical modulators based on emerging 2D direct band gap semiconductors.

8.
Nano Lett ; 17(11): 6715-6720, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28991494

RESUMEN

Atomically thin transition metal dichalcogenides like MoS2 monolayers exhibit unique luminescent properties. However, weak quantum yield and low light absorption hinder their practical applications in two-dimensional light emitting devices. Here, we report 1300 times enhancement in photoluminescence emission from a MoS2 monolayer via simultaneous Fano resonances in a dielectric photonic crystal. The spatially extended double Fano resonance scheme allows resonant enhancement of both the MoS2 absorption and emission. We also achieve unidirectional emission within a narrow divergence angle of 5° by engineering the Fano resonance angular dispersion. Our approach provides a new platform for efficient light sources with high directionality based on emerging two-dimensional materials.

9.
Nano Lett ; 17(7): 4541-4547, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28613887

RESUMEN

Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.

10.
Nano Lett ; 16(4): 2139-44, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26982325

RESUMEN

Oxygen vacancy formation, migration, and subsequent agglomeration into conductive filaments in transition metal oxides under applied electric field is widely believed to be responsible for electroforming in resistive memory devices, although direct evidence of such a pathway is lacking. Here, by utilizing strong metal-support interaction (SMSI) between Pt and TiO2, we observe via transmission electron microscopy the electroforming event in lateral Pt/TiO2/Pt devices where the atomic Pt from the electrode itself acts as a tracer for the propagating oxygen vacancy front. SMSI, which originates from the d-orbital overlap between Pt atom and the reduced cation of the insulating oxide in the vicinity of oxygen vacancies, was optimized by fabricating nanoscale devices causing Pt atom migration tracking the moving oxygen vacancy front from the anode to cathode during electroforming. Experiments performed in different oxidizing and reducing conditions, which tune SMSI in the Pt-TiO2 system, further confirmed the role of oxygen vacancies during electroforming. These observations also demonstrate that the noble metal electrode may not be as inert as previously assumed.

11.
Nano Lett ; 16(2): 1262-9, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26784532

RESUMEN

We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton-plasmon coupling strength, polariton composition, and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices.

12.
Nano Lett ; 16(3): 1631-6, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26854706

RESUMEN

Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials.

13.
Nano Lett ; 16(7): 4054-61, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27281693

RESUMEN

Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.

14.
Nano Lett ; 16(7): 4297-304, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27223343

RESUMEN

Growth of transition metal dichalcogenide (TMD) monolayers is of interest due to their unique electrical and optical properties. Films in the 2H and 1T phases have been widely studied but monolayers of some 1T'-TMDs are predicted to be large-gap quantum spin Hall insulators, suitable for innovative transistor structures that can be switched via a topological phase transition rather than conventional carrier depletion [ Qian et al. Science 2014 , 346 , 1344 - 1347 ]. Here we detail a reproducible method for chemical vapor deposition of monolayer, single-crystal flakes of 1T'-MoTe2. Atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm the composition and structure of MoTe2 flakes. Variable temperature magnetotransport shows weak antilocalization at low temperatures, an effect seen in topological insulators and evidence of strong spin-orbit coupling. Our approach provides a pathway to systematic investigation of monolayer, single-crystal 1T'-MoTe2 and implementation in next-generation nanoelectronic devices.


Asunto(s)
Gases/química , Espectrometría Raman , Frío , Espectroscopía de Fotoelectrones , Temperatura
15.
Nano Lett ; 15(5): 3646-53, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25926239

RESUMEN

The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton-plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, due to the decreased damping of MoS2 excitons interacting with the plasmonic resonances of the bowtie array at low temperatures stronger exciton-plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum. The Fano line shape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses.


Asunto(s)
Disulfuros/química , Molibdeno/química , Nanoestructuras/química , Plata/química , Luz , Espectrometría Raman , Resonancia por Plasmón de Superficie
16.
Small ; 11(12): 1402-8, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25367876

RESUMEN

CVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN.


Asunto(s)
Compuestos de Boro/química , Gases/química , Grafito/química , Nanopartículas/química , Nanopartículas/ultraestructura , Cristalización/métodos , Conductividad Eléctrica , Transporte de Electrón , Óxidos/química , Tamaño de la Partícula , Propiedades de Superficie
17.
Nano Lett ; 14(4): 2201-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24628625

RESUMEN

Structural defects and their dynamics play an important role in controlling the behavior of phase-change materials (PCM) used in low-power nonvolatile memory devices. However, not much is known about the influence of disorder on the electronic properties of crystalline PCM prior to a structural phase-change. Here, we show that the application of voltage pulses to single-crystalline GeTe nanowire memory devices introduces structural disorder in the form of dislocations and antiphase boundaries (APB). The dynamic evolution and pile-up of APBs increases disorder at a local region of the nanowire, which electronically transforms it from a metal to a dirty metal to an insulator, while still retaining single-crystalline long-range order. We also observe that close to this metal-insulator transition, precise control over the applied voltage is required to create an insulating state; otherwise the system ends up in a more disordered amorphous phase suggesting the role of electronic instabilities during the structural phase-change.

18.
Nano Lett ; 14(8): 4238-44, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24954396

RESUMEN

Graphene nanoribbons (GNRs) are promising candidates for next generation integrated circuit (IC) components; this fact motivates exploration of the relationship between crystallographic structure and transport of graphene patterned at IC-relevant length scales (<10 nm). We report on the controlled fabrication of pristine, freestanding GNRs with widths as small as 0.7 nm, paired with simultaneous lattice-resolution imaging and electrical transport characterization, all conducted within an aberration-corrected transmission electron microscope. Few-layer GNRs very frequently formed bonded-bilayers and were remarkably robust, sustaining currents in excess of 1.5 µA per carbon bond across a 5 atom-wide ribbon. We found that the intrinsic conductance of a sub-10 nm bonded bilayer GNR scaled with width as GBL(w) ≈ 3/4(e(2)/h)w, where w is the width in nanometers, while a monolayer GNR was roughly five times less conductive. Nanosculpted, crystalline monolayer GNRs exhibited armchair-terminated edges after current annealing, presenting a pathway for the controlled fabrication of semiconducting GNRs with known edge geometry. Finally, we report on simulations of quantum transport in GNRs that are in qualitative agreement with the observations.


Asunto(s)
Grafito/química , Nanotubos de Carbono/química , Conductividad Eléctrica , Nanotubos de Carbono/ultraestructura
19.
Nano Lett ; 14(5): 2709-14, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24742304

RESUMEN

We have developed a novel, all-electronic biosensor for opioids that consists of an engineered µ-opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding. A variant of the receptor protein that provided chemical recognition was computationally redesigned to enhance its solubility and stability in an aqueous environment. A shadow mask process was developed to fabricate arrays of hundreds of graphene transistors with average mobility of ∼1500 cm(2) V(-1) s(-1) and yield exceeding 98%. The biosensor exhibits high sensitivity and selectivity for the target naltrexone, an opioid receptor antagonist, with a detection limit of 10 pg/mL.


Asunto(s)
Técnicas Biosensibles/métodos , Grafito/química , Naltrexona/aislamiento & purificación , Receptores Opioides mu/antagonistas & inhibidores , Humanos , Naltrexona/química , Receptores Opioides mu/química , Agua/química
20.
Langmuir ; 30(10): 2914-20, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559290

RESUMEN

We report on the homeotropic alignment of lyotropic chromonic liquid crystals (LCLCs). Homeotropic anchoring of LCLCs is difficult to achieve, and this challenge has limited development of applications for LCLCs. In this work, homeotropic alignment is achieved using noncovalent interactions between the LCLC molecules and various alignment layers including graphene, parylene films, poly(methyl methacrylate) films, and fluoropolymer films. The LCLC molecules are unique in that they self-assemble via noncovalent interactions in water into elongated aggregates which, in turn, form nematic and columnar liquid crystal (LC) phases. Here we exploit these same noncovalent interactions to induce homeotropic anchoring of the nematic LCLC. Homeotropic alignment is confirmed by polarized optical microscopy and conoscopy. We also report on novel transient stripe textures that occur when an initial flow-induced planar alignment transforms into the equilibrium homeotropic alignment required by boundary conditions. An understanding of this behavior could be important for switching applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA