Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Arch Biochem Biophys ; 733: 109471, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36522814

RESUMEN

NahE is a hydratase-aldolase that converts o-substituted trans-benzylidenepyruvates (H, OH, or CO2-) to benzaldehyde, salicylaldehyde, or 2-carboxybenzaldehyde, respectively, and pyruvate. The enzyme is in a bacterial degradative pathway for naphthalene, which is a toxic and persistent environmental contaminant. Sequence, crystallographic, and mutagenic analysis identified the enzyme as a member of the N-acetylneuraminate lyase (NAL) subgroup in the aldolase superfamily. As such, it has a conserved lysine (Lys183) and tyrosine (Tyr155), for Schiff base formation, as well as a GXXGE motif for binding of the pyruvoyl carboxylate group. A crystal structure of the selenomethionine derivative of NahE shows these active site elements along with nearby residues that might be involved in the mechanism and/or specificity. Mutations of five active site amino acids (Thr65, Trp128, Tyr155, Asn157, and Asn281) were constructed and kinetic parameters measured in order to assess the effect(s) on catalysis. The results show that the two Trp128 mutants (Phe and Tyr) have the least effect on catalysis, whereas amino acids with bulky side chains at Thr65 (Val) and Asn281 (Leu) have the greatest effect. Changing Tyr155 to Phe and Asn157 to Ala also hinders catalysis, and the effects fall in between these extremes. These observations are put into a structural context using a crystal structure of the Schiff base of the reaction intermediate. Trapping experiments with substrate, Na(CN)BH3, and wild type enzyme and selected mutants mostly paralleled the kinetic analysis, and identified two salicylaldehyde-modified lysines: the active site lysine (Lys183) and one outside the active site (Lys279). The latter could be responsible for the observed inhibition of NahE by salicylaldehyde. Together, the results provide new insights into the NahE-catalyzed reaction.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Bases de Schiff , Fructosa-Bifosfato Aldolasa/genética , Cinética , Bases de Schiff/química , Bases de Schiff/metabolismo , Lisina , Mutágenos , Sitios de Unión , Aldehído-Liasas/química , Catálisis , Hidrolasas/metabolismo , Naftalenos , Especificidad por Sustrato
2.
Biochemistry ; 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559608

RESUMEN

The amino-terminal proline (Pro1) has long been thought to be a mechanistic imperative for tautomerase superfamily (TSF) enzymes, functioning as a general base or acid in all characterized reactions. However, a global examination of more than 11,000 nonredundant sequences of the TSF uncovered 346 sequences that lack Pro1. The majority (∼85%) are found in the malonate semialdehyde decarboxylase (MSAD) subgroup where most of the 294 sequences form a separate cluster. Four sequences within this cluster retain Pro1. Because these four sequences might provide clues to assist in the identification and characterization of activities of nearby sequences without Pro1, they were examined by kinetic, inhibition, and crystallographic studies. The most promising of the four (from Calothrix sp. PCC 6303 designated 437) exhibited decarboxylase and tautomerase activities and was covalently modified at Pro1 by 3-bromopropiolate. A crystal structure was obtained for the apo enzyme (2.35 Šresolution). The formation of a 3-oxopropanoate adduct with Pro1 provides clues to build a molecular model for the bound ligand. The modeled ligand extends into a region that allows interactions with three residues (Lys37, Arg56, Glu98), suggesting that these residues can play roles in the observed decarboxylation and tautomerization activities. Moreover, these same residues are conserved in 16 nearby, non-Pro1 sequences in a sequence similarity network. Thus far, these residues have not been implicated in the mechanisms of any other TSF members. The collected observations provide starting points for the characterization of the non-Pro1 sequences.

3.
Biochemistry ; 60(22): 1776-1786, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019384

RESUMEN

The tautomerase superfamily (TSF) is a collection of enzymes and proteins that share a simple ß-α-ß structural scaffold. Most members are constructed from a single-core ß-α-ß motif or two consecutively fused ß-α-ß motifs in which the N-terminal proline (Pro-1) plays a key and unusual role as a catalytic residue. The cumulative evidence suggests that a gene fusion event took place in the evolution of the TSF followed by duplication (of the newly fused gene) to result in the diversification of activity that is seen today. Analysis of the sequence similarity network (SSN) for the TSF identified several linking proteins ("linkers") whose similarity links subgroups of these contemporary proteins that might hold clues about structure-function relationship changes accompanying the emergence of new activities. A previously uncharacterized pair of linkers (designated N1 and N2) was identified in the SSN that connected the 4-oxalocrotonate tautomerase (4-OT) and cis-3-chloroacrylic acid dehalogenase (cis-CaaD) subgroups. N1, in the cis-CaaD subgroup, has the full complement of active site residues for cis-CaaD activity, whereas N2, in the 4-OT subgroup, lacks a key arginine (Arg-39) for canonical 4-OT activity. Kinetic characterization and nuclear magnetic resonance analysis show that N1 has activities observed for other characterized members of the cis-CaaD subgroup with varying degrees of efficiencies. N2 is a modest 4-OT but shows enhanced hydratase activity using allene and acetylene compounds, which might be due to the presence of Arg-8 along with Arg-11. Crystallographic analysis provides a structural context for these observations.


Asunto(s)
Hidrolasas/química , Isomerasas/química , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Catálisis , Dominio Catalítico/fisiología , Evolución Molecular , Cinética , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos
4.
Arch Biochem Biophys ; 673: 108081, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31445023

RESUMEN

Dihydroxy phenanthrene, fluoranthene, and pyrene derivatives are intermediates in the bacterial catabolism of the corresponding parent polycyclic aromatic hydrocarbon (PAH). Ring-opening of the dihydroxy species followed by a series of enzyme-catalyzed reactions generates metabolites that funnel into the Krebs Cycle with the eventual production of carbon dioxide and water. One complication in delineating these pathways and harnessing them for useful purposes is that the initial enzymatic processing produces multiple dihydroxy PAHs with multiple ring opening possibilities and products. As part of a systematic effort to address this issue, eight dihydroxy species were synthesized and characterized as the dimethoxy or diacetate derivatives. Several dihydroxy compounds were examined with two dioxygenases in the phenanthrene degradative pathway in Mycobacterium vanbaalenii PYR-1. One, 3,4-dihydroxyphenanthrene, was processed by PhdF with a kcat/Km of 6.0 × 106 M-1s-1, a value that is consistent with the annotated function of PhdF in the pathway. PhdI processed 1-hydroxy-2-naphthoate with a kcat/Km of 3.1 × 105 M-1s-1, which is also consistent with the proposed role in the pathway. The observations provide the first biochemical evidence for these two reactions in M. vanbaalenii PYR-1 and, to the best of our knowledge, the first biochemical evidence for the reaction of PhdF with 3,4-dihydroxyphenanthrene. Although PhdF is upregulated in the presence of pyrene, it did not process two dihydroxypyrenes. Methodology was developed for product analysis of the extradiol dioxygenases.


Asunto(s)
Dioxigenasas/metabolismo , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Biocatálisis
5.
Water Environ Res ; 91(4): 281-291, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30802358

RESUMEN

Laccases were studied for their ability to remove two compounds, 2-chlorophenol and sulfamethoxazole, in batch studies, both in buffered solutions and in wastewater samples from different points in a municipal water resource recovery facility. Two enzymes with and without a mediator (acetosyringone) were investigated: a commercial product derived from Myceliphthora thermophile and a laboratory-generated enzyme mix derived from Tramates versicolor. The chlorophenol was removed rapidly by the commercial enzyme in the presence of acetosyringone, but the primary products were coupling complexes of the reactants. Excellent removal was achieved without acetosyringone by the natural enzyme mix. Sulfamethoxazole was poorly removed in all laboratory-generated chemically buffered solutions, but was very well removed, without the addition of mediators, in secondary effluent suspensions from a municipal water resource recovery facility. Mechanistic studies are still required, but the results suggest that treatment via direct addition of enzymes is feasible to remove recalcitrant compounds in municipal wastewater.


Asunto(s)
Clorofenoles/aislamiento & purificación , Clorofenoles/metabolismo , Lacasa/metabolismo , Sulfametoxazol/aislamiento & purificación , Sulfametoxazol/metabolismo , Aguas Residuales/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/metabolismo
6.
Biochemistry ; 57(6): 1012-1021, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29303557

RESUMEN

5-Halo-2-hydroxy-2,4-pentadienoates (5-halo-HPDs) are reportedly generated in the bacterial catabolism of halogenated aromatic hydrocarbons by the meta-fission pathway. The 5-halo-HPDs, where the halogen can be bromide, chloride, or fluoride, result in the irreversible inactivation of 4-oxalocrotonate tautomerase (4-OT), which precedes the enzyme that generates them. The loss of activity is due to the covalent modification of the nucleophilic amino-terminal proline. Mass spectral and crystallographic analysis of the modified enzymes indicates that inactivation of 4-OT by 5-chloro- and 5-bromo-2-hydroxy-2,4-pentadienoate follows a mechanism different from that for the inactivation of 4-OT by 5-fluoro-2-hydroxy-2,4-pentadienoate. The 5-chloro and 5-bromo derivatives undergo 4-OT-catalyzed tautomerization to their respective α,ß-unsaturated ketones followed by attack at C5 (by the prolyl nitrogen) with concomitant loss of the halide. For the 5-fluoro species, the presence of a small amount of the α,ß-unsaturated ketone could result in a Michael addition of the prolyl nitrogen to C4 followed by protonation at C3. The fluoride is not eliminated. These observations suggest that the inactivation of 4-OT by a downstream metabolite could hamper the efficacy of the pathway, which is the first time that such a bottleneck has been reported for the meta-fission pathway.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Isomerasas/metabolismo , Pseudomonas putida/enzimología , Cristalografía por Rayos X , Activación Enzimática , Ácidos Grasos Insaturados/química , Halogenación , Isomerasas/química , Cinética , Modelos Moleculares , Pseudomonas putida/química , Pseudomonas putida/metabolismo
7.
Biochemistry ; 57(25): 3524-3536, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29856600

RESUMEN

NahE and PhdJ are bifunctional hydratase-aldolases in bacterial catabolic pathways for naphthalene and phenanthrene, respectively. Bacterial species with these pathways can use polycyclic aromatic hydrocarbons (PAHs) as sole sources of carbon and energy. Because of the harmful properties of PAHs and their widespread distribution and persistence in the environment, there is great interest in understanding these degradative pathways, including the mechanisms and specificities of the enzymes found in the pathways. This knowledge can be used to develop and optimize bioremediation techniques. Although hydratase-aldolases catalyze a major step in the PAH degradative pathways, their mechanisms are poorly understood. Sequence analysis identified NahE and PhdJ as members of the N-acetylneuraminate lyase (NAL) subgroup in the aldolase superfamily. Both have a conserved lysine and tyrosine (for Schiff base formation) as well as a GXXGE motif (to bind the pyruvoyl carboxylate group). Herein, we report the structures of NahE, PhdJ, and PhdJ covalently bound to substrate via a Schiff base. Structural analysis and dynamic light scattering experiments show that both enzymes are tetramers. A hydrophobic helix insert, present in the active sites of NahE and PhdJ, might differentiate them from other NAL subgroup members. The individual specificities of NahE and PhdJ are governed by Asn-281/Glu-285 and Ser-278/Asp-282, respectively. Finally, the PhdJ complex structure suggests a potential mechanism for hydration of substrate and subsequent retro-aldol fission. The combined findings fill a gap in our mechanistic understanding of these enzymes and their place in the NAL subgroup.


Asunto(s)
Aldehído-Liasas/química , Proteínas Bacterianas/química , Mycobacterium/enzimología , Oxo-Ácido-Liasas/química , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Moleculares , Mycobacterium/química , Mycobacterium/metabolismo , Oxo-Ácido-Liasas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Conformación Proteica , Multimerización de Proteína , Alineación de Secuencia , Especificidad por Sustrato
8.
Beilstein J Org Chem ; 13: 1022-1031, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28684981

RESUMEN

5-Halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates are stable dienols that are proposed intermediates in bacterial meta-fission pathways for the degradation of halogenated aromatic compounds. The presence of the halogen raises questions about how the bulk and/or electronegativity of these substrates would affect enzyme catalysis or whether some pathway enzymes have evolved to accommodate it. To address these questions, 5-halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates (5-halo = Cl, Br, F) were synthesized and a preliminary analysis of their enzymatic properties carried out. In aqueous buffer, 5-halo-2-hydroxy-2,4-pentadienoates rapidly equilibrate with the ß,γ-unsaturated ketones. For the 5-chloro and 5-bromo derivatives, a slower conversion to the α,ß-isomers follows. There is no detectable formation of the α,ß-isomer for the 5-fluoro derivative. Kinetic parameters were also obtained for both sets of compounds in the presence of 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 and Leptothrix cholodnii SP-6. For 5-halo-2-hydroxymuconates, there are no major differences in the kinetic parameters for the two enzymes (following the formation of the ß,γ-unsaturated ketones). In contrast, the L. cholodnii SP-6 4-OT is ≈10-fold less efficient than the P. putida mt-2 4-OT in the formation of the ß,γ-unsaturated ketones and the α,ß-isomers from the 5-halo-2-hydroxy-2,4-pentadienoates. The implications of these findings are discussed. The availability of these compounds will facilitate future studies of the haloaromatic catabolic pathways.

9.
Biochemistry ; 55(29): 4055-64, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27362840

RESUMEN

A stereochemical analysis has been carried out on two vinylpyruvate hydratases (VPH), which convert 2-hydroxy-2,4-pentadienoate to 2-keto-4S-hydroxypentanoate in meta-fission pathways. Bacterial strains with this pathway can use aromatic compounds as sole sources of energy and carbon. The analysis was carried out using the 5-methyl and 5-chloro derivatives of 2-hydroxy-2,4-pentadienoate with the enzymes from Pseudomonas putida mt-2 (Pp) and Leptothrix cholodnii SP-6 (Lc). In both organisms, VPH is in a complex with the preceding enzyme in the pathway, 4-oxalocrotonate decarboxylase (4-OD). In D2O, a deuteron is incorporated stereospecifically at the C-3 and C-5 positions of product by both Pp and Lc enzymes. Accordingly, the complexes generate (3S,5S)-3,5-[di-D]-2-keto-4S-hydroxyhexanoate and (3S,5R)-3,5-[di-D]-2-keto-4R-hydroxy-5-chloropentanoate (4R and 5R due to a priority numbering change). The substitution at C-5 (CH3 or Cl) or the source of the enzyme (Pp or Lc) does not change the stereochemical outcome. One mechanism that can account for the results is the ketonization of the 5-substituted dienol to the α,ß-unsaturated ketone (placing a deuteron at C-5 in D2O), followed by the conjugate addition of water (placing a deuteron at C-3). The stereochemical outcome for VPH (from Pp and Lc) is the same as that reported for a related enzyme, 2-oxo-hept-4-ene-1,7-dioate hydratase, from Escherichia coli C. The combined observations suggest similar mechanisms for these three enzymes that could possibly be common to this group of enzymes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidroliasas/química , Hidroliasas/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Hidroliasas/genética , Leptothrix/enzimología , Leptothrix/genética , Resonancia Magnética Nuclear Biomolecular , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidad por Sustrato
10.
Biochemistry ; 54(19): 3009-23, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25894805

RESUMEN

Cg10062 is a cis-3-chloroacrylic acid dehalogenase (cis-CaaD) homologue from Corynebacterium glutamicum with an unknown function and an uninformative genomic context. It shares 53% pairwise sequence similarity with cis-CaaD including the six active site amino acids (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114) that are critical for cis-CaaD activity. However, Cg10062 is a poor cis-CaaD: it lacks catalytic efficiency and isomer specificity. Two acetylene compounds (propiolate and 2-butynoate) and an allene compound, 2,3-butadienoate, were investigated as potential substrates. Cg10062 functions as a hydratase/decarboxylase using propiolate as well as the cis-3-chloro- and 3-bromoacrylates, generating mixtures of malonate semialdehyde and acetaldehyde. The two activities occur sequentially at the active site using the initial substrate. With 2,3-butadienoate and 2-butynoate, Cg10062 functions as a hydratase and converts both to acetoacetate. Mutations of the proposed water-activating residues (E114Q, E114D, and Y103F) have a range of consequences from a reduction in wild type activity to a switch of activities (i.e., hydratase into a hydratase/decarboxylase or vice versa). The intermediates for the hydration and decarboxylation products can be trapped as covalent adducts to Pro-1 when NaCNBH3 is incubated with the E114D mutant and 2,3-butadienoate or 2-butynoate, and the Y103F mutant and 2-butynoate. Three mechanisms are presented to explain these findings. One mechanism involves the direct attack of water on the substrate, whereas the other two mechanisms use covalent catalysis in which a covalent bond forms between Pro-1 and the hydration product or the substrate. The strengths and weaknesses of the mechanisms and the implications for Cg10062 function are discussed.


Asunto(s)
Alcadienos/metabolismo , Hidrolasas/metabolismo , Acetileno , Descarboxilación
11.
Arch Biochem Biophys ; 579: 8-17, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26032336

RESUMEN

The first enzyme in the oxalocrotonate branch of the naphthalene-degradation lower pathway in Pseudomonas putida G7 is NahI, a 2-hydroxymuconate semialdehyde dehydrogenase which converts 2-hydroxymuconate semialdehyde to 2-hydroxymuconate in the presence of NAD(+). NahI is in family 8 (ALDH8) of the NAD(P)(+)-dependent aldehyde dehydrogenase superfamily. In this work, we report the cloning, expression, purification and preliminary structural and kinetic characterization of the recombinant NahI. The nahI gene was subcloned into a T7 expression vector and the enzyme was overexpressed in Escherichia coli ArcticExpress as a hexa-histidine-tagged fusion protein. After purification by affinity and size-exclusion chromatography, dynamic light scattering and small-angle X-ray scattering experiments were conducted to analyze the oligomeric state and the overall shape of the enzyme in solution. The protein is a tetramer in solution and has nearly perfect 222 point group symmetry. Protein stability and secondary structure content were evaluated by a circular dichroism spectroscopy assay under different thermal conditions. Furthermore, kinetic assays were conducted and, for the first time, KM (1.3±0.3µM) and kcat (0.9s(-1)) values were determined at presumed NAD(+) saturation. NahI is highly specific for its biological substrate and has no activity with salicylaldehyde, another intermediate in the naphthalene-degradation pathway.


Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/ultraestructura , NAD/química , Naftalenos/química , Pseudomonas putida/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Activación Enzimática , Estabilidad de Enzimas , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pseudomonas putida/genética , Proteínas Recombinantes , Especificidad por Sustrato
12.
Biochemistry ; 52(24): 4204-16, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23692140

RESUMEN

cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 are 34% identical in sequence (54% similar). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis isomer. The basis for these differences is unknown, but a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A six-residue active site loop in cis-CaaD shows a conformation strikingly different from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. To examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to that of wild-type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover because of the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to covalent catalysis (using Pro-1) followed by hydrolysis of the enamine or imine tautomer in cis-CaaD versus direct hydration of the allene to yield acetoacetate in the case of Cg10062. The T34A mutant shows partial inactivation, requiring five turnovers of the substrate per monomer, which suggests that the direct hydration route is favored 80% of the time. However, the mutation does not alter the stereochemistry at C-2 of [2-D]acetoacetate when the reaction is conducted in D2O. Both cis-CaaD and the T34 mutant generate (2R)-[2-D]acetoacetate, whereas Cg10062 generates mostly the 2S isomer. The combined observations are consistent with a role for the loop region in cis-CaaD specificity and catalysis, but the precise role remains to be determined.


Asunto(s)
Análisis Mutacional de ADN , Hidrolasas/química , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Dominio Catalítico , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Pseudomonas/enzimología , Pseudomonas/metabolismo , Especificidad por Sustrato
13.
Biochemistry ; 52(28): 4830-41, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23781927

RESUMEN

Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal ion-independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide and a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. In terms of pairwise sequence, MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) is 38% identical with the Pseudomonas enzyme, including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. To determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of the enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for Pp MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily.


Asunto(s)
Actinomycetales/enzimología , Carboxiliasas/metabolismo , Mutación , Secuencia de Aminoácidos , Secuencia de Bases , Carboxiliasas/química , Carboxiliasas/genética , Cristalografía por Rayos X , Cartilla de ADN , Cinética , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray
14.
J Am Chem Soc ; 134(1): 293-304, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22129074

RESUMEN

cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.


Asunto(s)
Alcadienos/metabolismo , Aminas/metabolismo , Butiratos/metabolismo , Hidrolasas/metabolismo , Alcadienos/química , Aminas/química , Biocatálisis , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Hidrolasas/química , Cinética , Modelos Químicos , Modelos Moleculares , Mapeo Peptídico , Estructura Secundaria de Proteína , Pseudomonas/enzimología , Staphylococcus aureus/enzimología , Estereoisomerismo
15.
Biochemistry ; 50(35): 7600-11, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21809870

RESUMEN

The biosynthesis of the C ring of the antitumor antibiotic agent, tomaymycin, is proposed to proceed through five enzyme-catalyzed steps from l-tyrosine. The genes encoding these enzymes have recently been cloned and their functions tentatively assigned, but there is limited biochemical evidence supporting the assignments of the last three steps. One enzyme, TomN, shows 58% pairwise sequence similarity with 4-oxalocrotonate tautomerase (4-OT), an enzyme found in a catabolic pathway for aromatic hydrocarbons. The TomN sequence includes three amino acids (Pro-1, Arg-11, and Arg-39) that have been identified as critical catalytic residues in 4-OT. However, the proposed substrate for TomN is very different from that processed by 4-OT. To establish the function and mechanism of TomN and its relationship with 4-OT, we conducted kinetic, mutagenic, and structural studies. The kinetic parameters for TomN, and four alanine mutants, P1A, R11A, R39A, and R61A, were determined using 2-hydroxymuconate, the substrate for 4-OT. The TomN-catalyzed reaction using this substrate compares favorably to that of 4-OT. In addition, the kinetic parameters for the P1A, R11A, and R39A mutants of TomN parallel the trends observed for the corresponding 4-OT mutants, implicating an analogous mechanism. A high-resolution crystal structure (1.4 Å) of TomN shows that the overall structure and the active site region are highly similar to those of 4-OT with a root-mean-square deviation of 0.81 Å. Moreover, key active site residues are positionally conserved. The combined results suggest that the tentative assignment for TomN and the proposed sequence of events in the biosynthetic pathway leading to the formation of the C ring of tomaymycin might not be correct. An alternative pathway that awaits biochemical confirmation is proposed.


Asunto(s)
Proteínas Bacterianas/química , Vías Biosintéticas/fisiología , Isomerasas/química , Homología Estructural de Proteína , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/fisiología , Benzodiazepinonas/síntesis química , Benzodiazepinonas/química , Benzodiazepinonas/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Isomerasas/biosíntesis , Isomerasas/fisiología , Cinética , Estructura Terciaria de Proteína/fisiología , Pseudomonas putida/enzimología , Transducción de Señal/fisiología , Staphylococcus aureus/enzimología , Especificidad por Sustrato/fisiología
16.
Bioorg Chem ; 39(1): 1-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21074239

RESUMEN

The isomeric mixture of cis- and trans-1,3-dichloropropene constitutes the active component of a widely used nematocide known as Telone II®. The mixture is processed by various soil bacteria to acetaldehyde through the 1,3-dichloropropene catabolic pathway. The pathway relies on an isomer-specific hydrolytic dehalogenation reaction catalyzed by cis- or trans-3-chloroacrylic acid dehalogenase, known respectively as cis-CaaD and CaaD. Previous sequence analysis and crystallographic studies of the native and covalently modified enzymes identified Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114 as key binding and catalytic residues in cis-CaaD. Mutagenesis of these residues confirmed their importance to the dehalogenation reaction. Crystal structures of the native enzyme (2.01Å resolution) and the enzyme covalently modified at the Pro-1 nitrogen by 2-hydroxypropanoate (1.65Å resolution) are reported here. Both structures are at a resolution higher than previously reported (2.75Å and 2.1Å resolution, respectively). The conformation of the covalent adduct is strikingly different from that previously reported due to its interaction with a 7-residue loop (Thr-32 to Leu-38). The participation of another active site residue, Arg-117, in catalysis and inactivation was also examined. The implications of the combined findings for the mechanisms of catalysis and inactivation are discussed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Hidrolasas/antagonistas & inhibidores , Hidrolasas/química , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Hidrolasas/genética , Hidrolasas/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Mutación
17.
Biochemistry ; 49(3): 560-9, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19994913

RESUMEN

Proline utilization A (PutA) from Escherichia coli is a flavoprotein that has mutually exclusive roles as a transcriptional repressor of the put regulon and a membrane-associated enzyme that catalyzes the oxidation of proline to glutamate. Previous studies have shown that the binding of proline in the proline dehydrogenase (PRODH) active site and subsequent reduction of the FAD trigger global conformational changes that enhance PutA-membrane affinity. These events cause PutA to switch from its repressor to its enzymatic role, but the mechanism by which this signal is propagated from the active site to the distal membrane-binding domain is largely unknown. Here, it is shown that N-propargylglycine irreversibly inactivates PutA by covalently linking the flavin N(5) atom to the epsilon-amino of Lys329. Furthermore, inactivation locks PutA into a conformation that may mimic the proline-reduced, membrane-associated form. The 2.15 A resolution structure of the inactivated PRODH domain suggests that the initial events involved in broadcasting the reduced flavin state to the distal membrane-binding domain include major reorganization of the flavin ribityl chain, severe (35 degrees ) butterfly bending of the isoalloxazine ring, and disruption of an electrostatic network involving the flavin N(5) atom, Arg431, and Asp370. The structure also provides information about conformational changes associated with substrate binding. This analysis suggests that the active site is incompletely assembled in the absence of the substrate, and the binding of proline draws together conserved residues in helix 8 and the beta1-alphal loop to complete the active site.


Asunto(s)
Alquinos/química , Flavinas/química , Glicina/análogos & derivados , Prolina Oxidasa/química , Prolina/metabolismo , Alquinos/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flavinas/metabolismo , Glicina/química , Glicina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Prolina/química , Prolina Oxidasa/metabolismo , Conformación Proteica , Especificidad por Sustrato
18.
Nat Commun ; 10(1): 5232, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745079

RESUMEN

Recently, the targeting of ERK with ATP-competitive inhibitors has emerged as a potential clinical strategy to overcome acquired resistance to BRAF and MEK inhibitor combination therapies. In this study, we investigate an alternative strategy of targeting the D-recruitment site (DRS) of ERK. The DRS is a conserved region that lies distal to the active site and mediates ERK-protein interactions. We demonstrate that the small molecule BI-78D3 binds to the DRS of ERK2 and forms a covalent adduct with a conserved cysteine residue (C159) within the pocket and disrupts signaling in vivo. BI-78D3 does not covalently modify p38MAPK, JNK or ERK5. BI-78D3 promotes apoptosis in BRAF inhibitor-naive and resistant melanoma cells containing a BRAF V600E mutation. These studies provide the basis for designing modulators of protein-protein interactions involving ERK, with the potential to impact ERK signaling dynamics and to induce cell cycle arrest and apoptosis in ERK-dependent cancers.


Asunto(s)
Dioxanos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Tiazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sitios de Unión/genética , Línea Celular Tumoral , Cisteína/genética , Cisteína/metabolismo , Dioxanos/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/metabolismo , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/metabolismo
19.
Biochemistry ; 47(33): 8796-803, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18646866

RESUMEN

( R)- and ( S)-oxirane-2-carboxylate were determined to be active site-directed irreversible inhibitors of the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) homologue Cg10062 found in Corynebacterium glutamicum. Kinetic analysis indicates that the ( R) enantiomer binds more tightly and is the more potent inhibitor, likely reflecting more favorable interactions with active site residues. Pro-1 is the sole site of covalent modification by the ( R) and ( S) enantiomers. Pro-1, Arg-70, Arg-73, and Glu-114, previously identified as catalytic residues in Cg10062, have also been implicated in the inactivation mechanism. Pro-1, Arg-70, and Arg-73 are essential residues for the process as indicated by the observation that the enzymes with the corresponding alanine mutations are not covalently modified by either enantiomer. The E114Q mutant slows covalent modification of Cg10062 but does not prevent it. The results are comparable to those found for the irreversible inactivation of cis-CaaD by ( R)-oxirane-2-carboxylate with two important distinctions: the alkylation of cis-CaaD is stereospecific, and Glu-114 does not take part in the cis-CaaD inactivation mechanism. Cg10062 exhibits low-level cis-CaaD and trans-3-chloroacrylic acid dehalogenase (CaaD) activities, with the cis-CaaD activity predominating. Hence, the preference of Cg10062 for the cis isomer correlates with the observation that the ( R) enantiomer is the more potent inactivator. Moreover, the factors responsible for the relaxed substrate specificity of Cg10062 may account for the stereoselective inactivation by the enantiomeric epoxides. Delineation of these factors would provide a more complete picture of the substrate specificity determinants for cis-CaaD. This study represents an important step toward this goal by setting the stage for a crystallographic analysis of inactivated Cg10062.


Asunto(s)
Corynebacterium glutamicum/enzimología , Inhibidores Enzimáticos/farmacología , Óxido de Etileno/análogos & derivados , Óxido de Etileno/farmacología , Hidrolasas/antagonistas & inhibidores , Hidrolasas/genética , Inhibidores Enzimáticos/química , Óxido de Etileno/química , Hidrolasas/química , Hidrolasas/metabolismo , Estructura Molecular , Mapeo Peptídico , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Factores de Tiempo
20.
Biochemistry ; 47(20): 5573-80, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18426222

RESUMEN

The flavoenzyme proline dehydrogenase catalyzes the first step of proline catabolism, the oxidation of proline to pyrroline-5-carboxylate. Here we report the first crystal structure of an irreversibly inactivated proline dehydrogenase. The 1.9 A resolution structure of Thermus thermophilus proline dehydrogenase inactivated by the mechanism-based inhibitor N-propargylglycine shows that N5 of the flavin cofactor is covalently connected to the -amino group of Lys99 via a three-carbon linkage, consistent with the mass spectral analysis of the inactivated enzyme. The isoalloxazine ring has a butterfly angle of 25 degrees , which suggests that the flavin cofactor is reduced. Two mechanisms can account for these observations. In both, N-propargylglycine is oxidized to N-propargyliminoglycine. In one mechanism, this alpha,beta-unsaturated iminium compound is attacked by the N5 atom of the now reduced flavin to produce a 1,4-addition product. Schiff base formation between Lys99 and the imine of the 1,4-addition product releases glycine and links the enzyme to the modified flavin. In the second mechanism, hydrolysis of N-propargyliminoglycine yields propynal and glycine. A 1,4-addition reaction with propynal coupled with Schiff base formation between Lys99 and the carbonyl group tethers the enzyme to the flavin via a three-carbon chain. The presumed nonenzymatic hydrolysis of N-propargyliminoglycine and the subsequent rebinding of propynal to the enzyme make the latter mechanism less likely.


Asunto(s)
Alquinos/química , Alquinos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glicina/análogos & derivados , Prolina Oxidasa/química , Prolina Oxidasa/metabolismo , Thermus thermophilus/enzimología , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Glicina/química , Glicina/farmacología , Cinética , Espectrometría de Masas , Modelos Moleculares , Oxidación-Reducción , Prolina Oxidasa/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA