Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Math Biosci Eng ; 20(9): 16236-16258, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37920011

RESUMEN

COVID-19 is most commonly diagnosed using a testing kit but chest X-rays and computed tomography (CT) scan images have a potential role in COVID-19 diagnosis. Currently, CT diagnosis systems based on Artificial intelligence (AI) models have been used in some countries. Previous research studies used complex neural networks, which led to difficulty in network training and high computation rates. Hence, in this study, we developed the 6-layer Deep Neural Network (DNN) model for COVID-19 diagnosis based on CT scan images. The proposed DNN model is generated to improve accurate diagnostics for classifying sick and healthy persons. Also, other classification models, such as decision trees, random forests and standard neural networks, have been investigated. One of the main contributions of this study is the use of the global feature extractor operator for feature extraction from the images. Furthermore, the 10-fold cross-validation technique is utilized for partitioning the data into training, testing and validation. During the DNN training, the model is generated without dropping out of neurons in the layers. The experimental results of the lightweight DNN model demonstrated that this model has the best accuracy of 96.71% compared to the previous classification models for COVID-19 diagnosis.


Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , Prueba de COVID-19 , COVID-19/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X
2.
Math Biosci Eng ; 19(4): 3609-3635, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341267

RESUMEN

Cardiovascular disease is one of the most challenging diseases in middle-aged and older people, which causes high mortality. Coronary artery disease (CAD) is known as a common cardiovascular disease. A standard clinical tool for diagnosing CAD is angiography. The main challenges are dangerous side effects and high angiography costs. Today, the development of artificial intelligence-based methods is a valuable achievement for diagnosing disease. Hence, in this paper, artificial intelligence methods such as neural network (NN), deep neural network (DNN), and fuzzy C-means clustering combined with deep neural network (FCM-DNN) are developed for diagnosing CAD on a cardiac magnetic resonance imaging (CMRI) dataset. The original dataset is used in two different approaches. First, the labeled dataset is applied to the NN and DNN to create the NN and DNN models. Second, the labels are removed, and the unlabeled dataset is clustered via the FCM method, and then, the clustered dataset is fed to the DNN to create the FCM-DNN model. By utilizing the second clustering and modeling, the training process is improved, and consequently, the accuracy is increased. As a result, the proposed FCM-DNN model achieves the best performance with a 99.91% accuracy specifying 10 clusters, i.e., 5 clusters for healthy subjects and 5 clusters for sick subjects, through the 10-fold cross-validation technique compared to the NN and DNN models reaching the accuracies of 92.18% and 99.63%, respectively. To the best of our knowledge, no study has been conducted for CAD diagnosis on the CMRI dataset using artificial intelligence methods. The results confirm that the proposed FCM-DNN model can be helpful for scientific and research centers.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Anciano , Inteligencia Artificial , Análisis por Conglomerados , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Redes Neurales de la Computación
3.
Math Biosci Eng ; 19(3): 2381-2402, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35240789

RESUMEN

Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.


Asunto(s)
Miocarditis , Adulto , Algoritmos , Análisis por Conglomerados , Humanos , Imagen por Resonancia Magnética , Miocarditis/diagnóstico por imagen , Redes Neurales de la Computación
4.
Sci Rep ; 12(1): 11178, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778476

RESUMEN

Coronary artery disease (CAD) is a prevalent disease with high morbidity and mortality rates. Invasive coronary angiography is the reference standard for diagnosing CAD but is costly and associated with risks. Noninvasive imaging like cardiac magnetic resonance (CMR) facilitates CAD assessment and can serve as a gatekeeper to downstream invasive testing. Machine learning methods are increasingly applied for automated interpretation of imaging and other clinical results for medical diagnosis. In this study, we proposed a novel CAD detection method based on CMR images by utilizing the feature extraction ability of deep neural networks and combining the features with the aid of a random forest for the very first time. It is necessary to convert image data to numeric features so that they can be used in the nodes of the decision trees. To this end, the predictions of multiple stand-alone convolutional neural networks (CNNs) were considered as input features for the decision trees. The capability of CNNs in representing image data renders our method a generic classification approach applicable to any image dataset. We named our method RF-CNN-F, which stands for Random Forest with CNN Features. We conducted experiments on a large CMR dataset that we have collected and made publicly accessible. Our method achieved excellent accuracy (99.18%) using Adam optimizer compared to a stand-alone CNN trained using fivefold cross validation (93.92%) tested on the same dataset.


Asunto(s)
Enfermedad de la Arteria Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Redes Neurales de la Computación
5.
Math Biosci Eng ; 18(6): 9190-9232, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34814342

RESUMEN

Today's intelligent computing environments, including the Internet of Things (IoT), Cloud Computing (CC), Fog Computing (FC), and Edge Computing (EC), allow many organizations worldwide to optimize their resource allocation regarding the quality of service and energy consumption. Due to the acute conditions of utilizing resources by users and the real-time nature of the data, a comprehensive and integrated computing environment has not yet provided a robust and reliable capability for proper resource allocation. Although traditional resource allocation approaches in a low-capacity hardware resource system are efficient for small-scale resource providers, for a complex system in the conditions of dynamic computing resources and fierce competition in obtaining resources, they cannot develop and adaptively manage the conditions optimally. To optimize the resource allocation with minimal delay, low energy consumption, minimum computational complexity, high scalability, and better resource utilization efficiency, CC/FC/EC/IoT-based computing architectures should be designed intelligently. Therefore, the objective of this research is a comprehensive survey on resource allocation problems using computational intelligence-based evolutionary optimization and mathematical game theory approaches in different computing environments according to the latest scientific research achievements.


Asunto(s)
Teoría del Juego , Internet de las Cosas , Nube Computacional , Computadores , Asignación de Recursos
6.
Sci Rep ; 11(1): 15343, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321491

RESUMEN

COVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on image datasets. To date, it appears that COVID computer-aided diagnosis systems based on CNNs and clinical information have not yet been analysed or explored. We propose a novel method, named the CNN-AE, to predict the survival chance of COVID-19 patients using a CNN trained with clinical information. Notably, the required resources to prepare CT images are expensive and limited compared to those required to collect clinical data, such as blood pressure, liver disease, etc. We evaluated our method using a publicly available clinical dataset that we collected. The dataset properties were carefully analysed to extract important features and compute the correlations of features. A data augmentation procedure based on autoencoders (AEs) was proposed to balance the dataset. The experimental results revealed that the average accuracy of the CNN-AE (96.05%) was higher than that of the CNN (92.49%). To demonstrate the generality of our augmentation method, we trained some existing mortality risk prediction methods on our dataset (with and without data augmentation) and compared their performances. We also evaluated our method using another dataset for further generality verification. To show that clinical data can be used for COVID-19 survival chance prediction, the CNN-AE was compared with multiple pre-trained deep models that were tuned based on CT images.


Asunto(s)
COVID-19/diagnóstico , COVID-19/mortalidad , Diagnóstico por Computador/métodos , Predicción/métodos , Redes Neurales de la Computación , Algoritmos , Aprendizaje Profundo , Humanos , Probabilidad , SARS-CoV-2/aislamiento & purificación
7.
Biomed Signal Process Control ; 68: 102622, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33846685

RESUMEN

The coronavirus (COVID-19) is currently the most common contagious disease which is prevalent all over the world. The main challenge of this disease is the primary diagnosis to prevent secondary infections and its spread from one person to another. Therefore, it is essential to use an automatic diagnosis system along with clinical procedures for the rapid diagnosis of COVID-19 to prevent its spread. Artificial intelligence techniques using computed tomography (CT) images of the lungs and chest radiography have the potential to obtain high diagnostic performance for Covid-19 diagnosis. In this study, a fusion of convolutional neural network (CNN), support vector machine (SVM), and Sobel filter is proposed to detect COVID-19 using X-ray images. A new X-ray image dataset was collected and subjected to high pass filter using a Sobel filter to obtain the edges of the images. Then these images are fed to CNN deep learning model followed by SVM classifier with ten-fold cross validation strategy. This method is designed so that it can learn with not many data. Our results show that the proposed CNN-SVM with Sobel filter (CNN-SVM + Sobel) achieved the highest classification accuracy, sensitivity and specificity of 99.02%, 100% and 95.23%, respectively in automated detection of COVID-19. It showed that using Sobel filter can improve the performance of CNN. Unlike most of the other researches, this method does not use a pre-trained network. We have also validated our developed model using six public databases and obtained the highest performance. Hence, our developed model is ready for clinical application.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31979257

RESUMEN

Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico , Árboles de Decisión , Máquina de Vectores de Soporte , Adulto , Anciano , Anciano de 80 o más Años , Diagnóstico por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA