Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Braz J Cardiovasc Surg ; 39(4): e20230237, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748975

RESUMEN

Transcatheter mitral valve-in-valve is an alternative to high-risk reoperation on a failing bioprosthesis. It entails specific challenges such as left ventricular outflow tract obstruction. We propose a patient-specific augmented imaging based on preoperative planning to assist the procedure. Valve-in-valve simulation was performed to represent the optimal level of implantation and the neo-left ventricular outflow tract. These data were combined with intraoperative images through a real-time 3D/2D registration tool. All data were collected retrospectively on one case (pre and per-procedure imaging). We present for the first time an intraoperative guidance tool in transcatheter mitral valve-in-valve procedure.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Válvula Mitral , Cirugía Asistida por Computador , Humanos , Bioprótesis , Cateterismo Cardíaco/métodos , Implantación de Prótesis de Válvulas Cardíacas/métodos , Válvula Mitral/cirugía , Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Estudios Retrospectivos , Cirugía Asistida por Computador/métodos
2.
Nat Med ; 29(1): 135-146, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658418

RESUMEN

Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic potential and poor prognosis, and has limited treatment options. The current standard of care in nonmetastatic settings is neoadjuvant chemotherapy (NACT), but treatment efficacy varies substantially across patients. This heterogeneity is still poorly understood, partly due to the paucity of curated TNBC data. Here we investigate the use of machine learning (ML) leveraging whole-slide images and clinical information to predict, at diagnosis, the histological response to NACT for early TNBC women patients. To overcome the biases of small-scale studies while respecting data privacy, we conducted a multicentric TNBC study using federated learning, in which patient data remain secured behind hospitals' firewalls. We show that local ML models relying on whole-slide images can predict response to NACT but that collaborative training of ML models further improves performance, on par with the best current approaches in which ML models are trained using time-consuming expert annotations. Our ML model is interpretable and is sensitive to specific histological patterns. This proof of concept study, in which federated learning is applied to real-world datasets, paves the way for future biomarker discovery using unprecedentedly large datasets.


Asunto(s)
Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Terapia Neoadyuvante/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resultado del Tratamiento
3.
Rev. bras. cir. cardiovasc ; Rev. bras. cir. cardiovasc;39(4): e20230237, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1559405

RESUMEN

ABSTRACT Transcatheter mitral valve-in-valve is an alternative to high-risk reoperation on a failing bioprosthesis. It entails specific challenges such as left ventricular outflow tract obstruction. We propose a patient-specific augmented imaging based on preoperative planning to assist the procedure. Valve-in-valve simulation was performed to represent the optimal level of implantation and the neo-left ventricular outflow tract. These data were combined with intraoperative images through a real-time 3D/2D registration tool. All data were collected retrospectively on one case (pre and per-procedure imaging). We present for the first time an intraoperative guidance tool in transcatheter mitral valve-in-valve procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA