Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 153(4): 1083-1094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110059

RESUMEN

BACKGROUND: Impaired interferon response and allergic sensitization may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDCs) play a key role in antiviral immunity as critical producers of type I interferons. pDCs also express the high-affinity IgE receptor through which type I interferon production may be negatively regulated. Whether antiviral function of pDCs is associated with recurrent episodes of wheeze in young children is not well understood. OBJECTIVE: We sought to evaluate the phenotype and function of circulating pDCs in children with a longitudinally defined wheezing phenotype. METHODS: We performed multiparameter flow cytometry on PBMCs from 38 children presenting to the emergency department with an acute episode of respiratory wheeze and 19 controls. RNA sequencing on isolated pDCs from the same individuals was also performed. For each subject, their longitudinal exacerbation phenotype was determined using the Western Australia public hospital database. RESULTS: We observed a significant depletion of circulating pDCs in young children with a persistent phenotype of wheeze. The same individuals also displayed upregulation of the FcεRI on their pDCs. Based on transcriptomic analysis, pDCs from these individuals did not mount a robust systemic antiviral response as observed in children who displayed a nonrecurrent wheezing phenotype. CONCLUSIONS: Our data suggest that circulating pDC phenotype and function are altered in young children with a persistent longitudinal exacerbation phenotype. Expression of high-affinity IgE receptor is increased and their function as major interferon producers is impaired during acute exacerbations of wheeze.


Asunto(s)
Asma , Interferón Tipo I , Niño , Humanos , Preescolar , Receptores de IgE , Ruidos Respiratorios , Interferón Tipo I/metabolismo , Células Dendríticas
2.
Respir Res ; 24(1): 184, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438758

RESUMEN

Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children (n = 19) during acute virus-associated exacerbations and later during convalescence. Systems level analyses were employed to identify coexpression networks and infer the drivers of these networks, and validation was subsequently obtained via independent samples from asthmatic children. During exacerbations, PBMC exhibited significant changes in immune cell abundance and upregulation of complex interlinked networks of coexpressed genes. These were associated with priming of innate immunity, inflammatory and remodelling functions. We identified activation signatures downstream of bacterial LPS, glucocorticoids and TGFB1. We also confirmed that LPS binding protein was upregulated at the protein-level in plasma. Multiple gene networks known to be involved positively or negatively in asthma pathogenesis, are upregulated in circulating PBMC during acute exacerbations, supporting the hypothesis that systemic pre-programming of potentially pathogenic as well as protective functions of circulating immune cells preceeds migration into the airways. Enhanced sensitivity to LPS is likely to modulate the severity of acute asthma exacerbations through exposure to environmental LPS.


Asunto(s)
Asma , Hipersensibilidad Inmediata , Humanos , Niño , Lipopolisacáridos , Leucocitos Mononucleares , Asma/diagnóstico , Asma/genética , Movimiento Celular , Convalecencia
3.
J Allergy Clin Immunol ; 150(1): 93-103, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35177255

RESUMEN

BACKGROUND: Results from recent clinical studies suggest potential efficacy of immune training (IT)-based approaches for protection against severe lower respiratory tract infections in infants, but underlying mechanisms are unclear. OBJECTIVE: We used systems-level analyses to elucidate IT mechanisms in infants in a clinical trial setting. METHODS: Pre- and posttreatment peripheral blood mononuclear cells from a placebo-controlled trial in which winter treatment with the IT agent OM85 reduced infant respiratory infection frequency and/or duration were stimulated for 24 hours with the virus/bacteria mimics polyinosinic:polycytidylic acid/lipopolysaccharide. Transcriptomic profiling via RNA sequencing, pathway and upstream regulator analyses, and systems-level gene coexpression network analyses were used sequentially to elucidate and compare responses in treatment and placebo groups. RESULTS: In contrast to subtle changes in antivirus-associated polyinosinic:polycytidylic acid response profiles, the bacterial lipopolysaccharide-triggered gene coexpression network responses exhibited OM85 treatment-associated upregulation of IFN signaling. This was accompanied by network rewiring resulting in increased coordination of TLR4 expression with IFN pathway-associated genes (especially master regulator IRF7); segregation of TNF and IFN-γ (which potentially synergize to exaggerate inflammatory sequelae) into separate expression modules; and reduced size/complexity of the main proinflammatory network module (containing, eg, IL-1,IL-6, and CCL3). Finally, we observed a reduced capacity for lipopolysaccharide-induced inflammatory cytokine (eg, IL-6 and TNF) production in the OM85 group. CONCLUSION: These changes are consistent with treatment-induced enhancement of bacterial pathogen detection/clearance capabilities concomitant with enhanced capacity to regulate ensuing inflammatory response intensity and duration. We posit that IT agents exemplified by OM85 potentially protect against severe lower respiratory tract infections in infants principally by effects on innate immune responses targeting the bacterial components of the mixed respiratory viral/bacterial infections that are characteristic of this age group.


Asunto(s)
Infecciones del Sistema Respiratorio , Virus , Humanos , Lactante , Interleucina-6/metabolismo , Leucocitos Mononucleares , Lipopolisacáridos , Poli I-C
4.
Allergy ; 77(10): 3015-3027, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35615783

RESUMEN

BACKGROUND: The immunological changes underpinning acquisition of remission (also called sustained unresponsiveness) following food immunotherapy remain poorly defined. Limited access to effective therapies and biosamples from treatment responders has prevented progress. Probiotic peanut oral immunotherapy is highly effective at inducing remission, providing an opportunity to investigate immune changes. METHODS: Using a systems biology approach, we examined gene co-expression network patterns in peanut-specific CD4+ T cell responses before and after probiotic and peanut oral immunotherapy in subjects enrolled in the PPOIT-001 randomized trial: Responders who attained remission (n = 16), placebo-treated who remained allergic (n = 16). RESULTS: Acquisition of remission was associated with rewiring of gene network patterns, which was characterized by integration of T helper 2 and interferon signalling modules, markedly reduced T helper 2 gene connectivity, and shutdown in co-expression activity between T helper 2 effectors and cell cycle regulators. CONCLUSION: The immunological changes underlying remission following peanut oral immunotherapy are mediated by reprogramming of T helper 2-associated gene networks in the CD4+ T cell compartment. Findings provide insight into immune mechanisms driving the acquisition of remission following oral immunotherapy, paving the way for the development of improved approaches to induce remission/sustained unresponsiveness in patients with food allergy.


Asunto(s)
Hipersensibilidad al Cacahuete , Probióticos , Administración Oral , Alérgenos , Arachis , Desensibilización Inmunológica , Redes Reguladoras de Genes , Humanos , Interferones , Hipersensibilidad al Cacahuete/terapia
5.
Am J Respir Crit Care Med ; 202(2): 202-209, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32142615

RESUMEN

Rationale: Individuals with asthma have heightened antibody responses to rhinoviruses (RVs), although those specific for RV-C are lower than responses specific for RV-A, suggesting poor immunity to this species.Objectives: To ascertain and compare T-cell memory responses induced by RV-A and RV-C in children with and without asthma.Methods: Peripheral blood mononuclear cells from 17 children with asthma and 19 control subjects without asthma were stimulated in vitro with peptide formulations to induce representative species-specific responses to RV-A and RV-C. Molecular profiling (RNA sequencing) was used to identify enriched pathways and upstream regulators.Measurements and Main Results: Responses to RV-A showed higher expression of IFNG and STAT1 compared with RV-C, and significant expression of CXCL9, 10, and 11 was not found for RV-C. There was no reciprocal increase of T-helper cell type 2 (Th2) cytokine genes or the Th2 chemokine genes CCL11, CCL17, and CCL22. RV-C induced higher expression of CCL24 (eotaxin-2) than RV-A in the responses of children with and without asthma. Upstream regulator analysis showed both RV-A and, although to a lesser extent, RV-C induced predominant Th1 and inflammatory cytokine expression. The responses of children with asthma compared with those without asthma were lower for both RV-A and RV-C while retaining the pattern of gene expression and upstream regulators characteristic of each species. All groups showed activation of the IL-17A pathway.Conclusions: RV-C induced memory cells with a lower IFN-γ-type response than RV-A without T-helper cell type 2 (Th2) upregulation. Children with asthma had lower recall responses than those without asthma while largely retaining the same gene activation profile for each species. RV-A and RV-C, therefore, induce qualitatively different T-cell responses.


Asunto(s)
Asma/genética , Asma/inmunología , Enterovirus/inmunología , Linfocitos/inmunología , Linfocitos/virología , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/inmunología , Adolescente , Células Cultivadas , Niño , Preescolar , Femenino , Regulación Viral de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Células Th2/inmunología
6.
Allergy ; 75(9): 2330-2341, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32181882

RESUMEN

BACKGROUND: Multiple regulatory mechanisms have been identified employing conventional hypothesis-driven approaches as contributing to allergen-specific immunotherapy outcomes, but understanding of how these integrate to maintain immunological homeostasis is incomplete. OBJECTIVE: To explore the potential for unbiased systems-level gene co-expression network analysis to advance understanding of immunotherapy mechanisms. METHODS: We profiled genome-wide allergen-induced Th-cell responses prospectively during 24 months subcutaneous immunotherapy (SCIT) in 25 rhinitis, documenting changes in immunoinflammatory pathways and associated co-expression networks and their relationships to symptom scores out to 36 months. RESULTS: Prior to immunotherapy, mite-induced Th-cell response networks involved multiple discrete co-expression modules including those related to Th2-, type1 IFN-, inflammation- and FOXP3/IL2-associated signalling. A signature comprising 109 genes correlated with symptom scores, and these mapped to cytokine signalling/T-cell activation-associated pathways, with upstream drivers including hallmark Th1/Th2- and inflammation-associated genes. Reanalysis after 3.5 months SCIT updosing detected minimal changes to pathway/upstream regulator profiles despite 32.5% symptom reduction; however, network analysis revealed underlying merging of FOXP3/IL2-with inflammation-and Th2-associated modules. By 12 months SCIT, symptoms had reduced by 41% without further significant changes to pathway/upstream regulator or network profiles. Continuing SCIT to 24 months stabilized symptoms at 47% of baseline, accompanied by upregulation of the type1 IFN-associated network module and its merging into the Th2/FOXP3/IL2/inflammation module. CONCLUSIONS: Subcutaneous immunotherapy stimulates progressive integration of mite-induced Th cell-associated Th2-, FOXP3/IL2-, inflammation- and finally type1 IFN-signalling subnetworks, forming a single highly integrated co-expression network module, maximizing potential for stable homeostatic control of allergen-induced Th2 responses via cross-regulation. Th2-antagonistic type1 IFN signalling may play a key role in stabilizing clinical effects of SCIT.


Asunto(s)
Redes Reguladoras de Genes , Ácaros , Alérgenos , Animales , Desensibilización Inmunológica , Inmunoterapia , Linfocitos T Colaboradores-Inductores
7.
Am J Respir Crit Care Med ; 199(12): 1537-1549, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30562046

RESUMEN

Rationale: A subset of infants are hypersusceptible to severe/acute viral bronchiolitis (AVB), for reasons incompletely understood. Objectives: To characterize the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airway tissues. Methods: Peripheral blood mononuclear cells and nasal scrapings were obtained from infants (<18 mo) and children (≥18 mo to 5 yr) during AVB and after convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data used a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis using personalized N-of-1-pathways methodology. Measurements and Main Results: Group-level analyses demonstrated that infant peripheral blood mononuclear cell responses were dominated by monocyte-associated hyperupregulated type 1 IFN signaling/proinflammatory pathways (drivers: TNF [tumor necrosis factor], IL-6, TREM1 [triggering receptor expressed on myeloid cells 1], and IL-1B), versus a combination of inflammation (PTGER2 [prostaglandin E receptor 2] and IL-6) plus growth/repair/remodeling pathways (ERBB2 [erbb-b2 receptor tyrosine kinase 2], TGFB1 [transforming growth factor-ß1], AREG [amphiregulin], and HGF [hepatocyte growth factor]) coupled with T-helper cell type 2 and natural killer cell signaling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by IFN types 1-3, but the magnitude of upregulation was higher in infants (range, 6- to 48-fold) than children (5- to 17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and natural killer cell networks in children, and additionally demonstrated covert AVB response subphenotypes that were independent of chronologic age. Conclusions: Dysregulated expression of IFN-dependent pathways after respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects seem to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence.


Asunto(s)
Bronquiolitis Viral/genética , Bronquiolitis Viral/inmunología , Inmunidad Innata , Leucocitos Mononucleares/inmunología , Mucosa Nasal/inmunología , Fenotipo , Transcriptoma , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Análisis de Secuencia de ARN
8.
Pediatr Allergy Immunol ; 30(6): 646-653, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30985951

RESUMEN

BACKGROUND: Antigen-specific IgE binds the Fcε receptor I (FcεRI) expressed on several types of immune cells, including dendritic cells (DCs). Activation of FcεRI on DCs in atopics has been shown to modulate immune responses that potentially contribute to asthma development. However, the extent to which DC subsets differ in FcεRI expression between atopic children with or without asthma is currently not clear. This study aimed to analyse the expression of FcεRI on peripheral blood mononuclear cells (PBMCs) from atopic children with and without asthma, and non-atopic/non-asthmatic age-matched healthy controls. METHODS: We performed multiparameter flow cytometry on PBMC from 391 children across three community cohorts and one clinical cohort based in Western Australia. RESULTS: We confirmed expression of FcεRI on basophils, monocytes, plasmacytoid and conventional DCs, with higher proportions of all cell populations expressing FcεRI in atopic compared to non-atopic children. Further, we observed that levels of FcεRI expression were elevated across plasmacytoid and conventional DC as well as basophils in atopic asthmatic compared to atopic non-asthmatic children also after adjusting for serum IgE levels. CONCLUSION: Our data suggest that the expression pattern of FcεRI on DC and basophils differentiates asthmatic from non-asthmatic atopic children. Given the significant immune modulatory effects observed as a consequence of FcεRI expression, this altered expression pattern is likely to contribute to asthma pathology in children.


Asunto(s)
Asma/metabolismo , Basófilos/fisiología , Células Dendríticas/fisiología , Hipersensibilidad Inmediata/metabolismo , Leucocitos Mononucleares/fisiología , Receptores de IgE/metabolismo , Adolescente , Asma/genética , Australia , Niño , Preescolar , Estudios de Cohortes , Femenino , Citometría de Flujo , Humanos , Hipersensibilidad Inmediata/genética , Inmunoglobulina E/sangre , Inmunomodulación , Masculino , Receptores de IgE/genética , Regulación hacia Arriba
9.
J Allergy Clin Immunol ; 140(2): 534-542, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28011059

RESUMEN

BACKGROUND: The timing and mechanisms of asthma inception remain imprecisely defined. Although epigenetic mechanisms likely contribute to asthma pathogenesis, little is known about their role in asthma inception. OBJECTIVE: We sought to assess whether the trajectory to asthma begins already at birth and whether epigenetic mechanisms, specifically DNA methylation, contribute to asthma inception. METHODS: We used the Methylated CpG Island Recovery Assay chip to survey DNA methylation in cord blood mononuclear cells from 36 children (18 nonasthmatic and 18 asthmatic subjects by age 9 years) from the Infant Immune Study (IIS), an unselected birth cohort closely monitored for asthma for a decade. SMAD3 methylation in IIS (n = 60) and in 2 replication cohorts (the Manchester Asthma and Allergy Study [n = 30] and the Childhood Origins of Asthma Study [n = 28]) was analyzed by using bisulfite sequencing or Illumina 450K arrays. Cord blood mononuclear cell-derived IL-1ß levels were measured by means of ELISA. RESULTS: Neonatal immune cells harbored 589 differentially methylated regions that distinguished IIS children who did and did not have asthma by age 9 years. In all 3 cohorts methylation in SMAD3, the most connected node within the network of asthma-associated, differentially methylated regions, was selectively increased in asthmatic children of asthmatic mothers and was associated with childhood asthma risk. Moreover, SMAD3 methylation in IIS neonates with maternal asthma was strongly and positively associated with neonatal production of IL-1ß, an innate inflammatory mediator. CONCLUSIONS: The trajectory to childhood asthma begins at birth and involves epigenetic modifications in immunoregulatory and proinflammatory pathways. Maternal asthma influences epigenetic mechanisms that contribute to the inception of this trajectory.


Asunto(s)
Asma/genética , Proteína smad3/genética , Niño , Preescolar , Islas de CpG , Metilación de ADN , Epigénesis Genética , Sangre Fetal/citología , Humanos , Recién Nacido , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Madres , Regiones Promotoras Genéticas
10.
J Allergy Clin Immunol ; 137(6): 1872-1881.e12, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26851967

RESUMEN

BACKGROUND: Activated TH2 cells and eosinophils are hallmarks of the allergic inflammation seen in patients with allergic rhinitis (AR). However, which cells activate and attract T cells and eosinophils to the inflammatory lesion has not been determined. OBJECTIVE: We wanted to assess the role of mucosal mononuclear phagocytes, consisting of monocytes, macrophages, and dendritic cells, in the local allergic inflammatory reaction. METHODS: Patients with AR and nonatopic control subjects were challenged with pollen extract, and nasal symptoms were recorded. Mucosal biopsy specimens obtained at different time points before and after challenge were used for immunostaining in situ and flow cytometric cell sorting. Sorted mononuclear phagocytes were subjected to RNA extraction and gene expression profiling. RESULTS: In an in vivo model of AR, we found that CD14(+) monocytes were recruited to the nasal mucosa within hours after local allergen challenge, whereas conventional dendritic cells accumulated after several days of continued provocation. Transcriptomic profiling of mucosal mononuclear phagocytes sorted after 1 week of continued allergen challenge showed an activated phenotype at least partially driven by IL-4 signaling, IL-13 signaling, or both. Importantly, gene expression of several TH2-related chemokines was significantly upregulated by the mononuclear phagocyte population concomitant with an increased recruitment of CD4(+) T cells and eosinophils. CONCLUSION: Our findings suggest that the mononuclear phagocyte population is directly involved in the production of proinflammatory chemokines that attract other immune cells. Rapid recruitment of CD14(+) monocytes to the challenged site indicates that these proinflammatory mononuclear phagocytes have a central role in orchestrating local allergic inflammation.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Receptores de Lipopolisacáridos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Rinitis Alérgica/inmunología , Rinitis Alérgica/metabolismo , Adulto , Alérgenos/inmunología , Biopsia , Análisis por Conglomerados , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Rinitis Alérgica/diagnóstico , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
11.
Am J Respir Cell Mol Biol ; 53(5): 664-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25867172

RESUMEN

We have previously demonstrated increased airway smooth muscle (ASM) mass and airway hyperresponsiveness in whole-life vitamin D-deficient female mice. In this study, we aimed to uncover the molecular mechanisms contributing to altered lung structure and function. RNA was extracted from lung tissue of whole-life vitamin D-deficient and -replete female mice, and gene expression patterns were profiled by RNA sequencing. The data showed that genes involved in embryonic organ development, pattern formation, branching morphogenesis, Wingless/Int signaling, and inflammation were differentially expressed in vitamin D-deficient mice. Network analysis suggested that differentially expressed genes were connected by the hubs matrix metallopeptidase 9; NF-κ light polypeptide gene enhancer in B cells inhibitor, α; epidermal growth factor receptor; and E1A binding protein p300. Given our findings that developmental pathways may be altered, we investigated if the timing of vitamin D exposure (in utero vs. postnatal) had an impact on lung health outcomes. Gene expression was measured in in utero or postnatal vitamin D-deficient mice, as well as whole-life vitamin D-deficient and -replete mice at 8 weeks of age. Baseline lung function, airway hyperresponsiveness, and airway inflammation were measured and lungs fixed for lung structure assessment using stereological methods and quantification of ASM mass. In utero vitamin D deficiency was sufficient to increase ASM mass and baseline airway resistance and alter lung structure. There were increased neutrophils but decreased lymphocytes in bronchoalveolar lavage. Expression of inflammatory molecules S100A9 and S100A8 was mainly increased in postnatal vitamin D-deficient mice. These observations suggest that in utero vitamin D deficiency can alter lung structure and function and increase inflammation, contributing to symptoms in chronic diseases, such as asthma.


Asunto(s)
Hiperreactividad Bronquial/inmunología , Pulmón/inmunología , Músculo Liso/inmunología , Hipersensibilidad Respiratoria/inmunología , Deficiencia de Vitamina D/inmunología , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Resistencia de las Vías Respiratorias/inmunología , Animales , Hiperreactividad Bronquial/complicaciones , Hiperreactividad Bronquial/genética , Hiperreactividad Bronquial/metabolismo , Líquido del Lavado Bronquioalveolar/química , Calgranulina A/genética , Calgranulina A/inmunología , Calgranulina B/genética , Calgranulina B/inmunología , Modelos Animales de Enfermedad , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/inmunología , Receptores ErbB/genética , Receptores ErbB/inmunología , Femenino , Regulación de la Expresión Génica , Pulmón/metabolismo , Pulmón/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Ratones , Músculo Liso/metabolismo , Músculo Liso/patología , FN-kappa B/genética , FN-kappa B/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/inmunología , Embarazo , Hipersensibilidad Respiratoria/complicaciones , Hipersensibilidad Respiratoria/genética , Hipersensibilidad Respiratoria/metabolismo , Transducción de Señal , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/genética , Deficiencia de Vitamina D/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/inmunología
14.
Am J Respir Crit Care Med ; 195(11): 1409-1411, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569573
15.
Front Immunol ; 13: 837013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309309

RESUMEN

Medulloblastoma is the most common childhood brain cancer. Mainstay treatments of radiation and chemotherapy have not changed in decades and new treatment approaches are crucial for the improvement of clinical outcomes. To date, immunotherapies for medulloblastoma have been unsuccessful, and studies investigating the immune microenvironment of the disease and the impact of current therapies are limited. Preclinical models that recapitulate both the disease and immune environment are essential for understanding immune-tumor interactions and to aid the identification of new and effective immunotherapies. Using an immune-competent mouse model of aggressive Myc-driven medulloblastoma, we characterized the brain immune microenvironment and changes induced in response to craniospinal irradiation, or the medulloblastoma chemotherapies cyclophosphamide or gemcitabine. The role of adaptive immunity in disease progression and treatment response was delineated by comparing survival outcomes in wildtype C57Bl/6J and in mice deficient in Rag1 that lack mature T and B cells. We found medulloblastomas in wildtype and Rag1-deficient mice grew equally fast, and that craniospinal irradiation and chemotherapies extended survival equally in wildtype and Rag1-deficient mice, suggesting that tumor growth and treatment response is independent of T and B cells. Medulloblastomas were myeloid dominant, and in wildtype mice, craniospinal irradiation and cyclophosphamide depleted T and B cells in the brain. Gemcitabine treatment was found to minimally alter the immune populations in the brain, resulting only in a depletion of neutrophils. Intratumorally, we observed an abundance of Iba1+ macrophages, and we show that CD45high cells comprise the majority of immune cells within these medulloblastomas but found that existing markers are insufficient to clearly delineate resident microglia from infiltrating macrophages. Ultimately, brain resident and peripheral macrophages dominate the brain and tumor microenvironment and are not depleted by standard-of-care medulloblastoma therapies. These populations therefore present a favorable target for immunotherapy in combination with front-line treatments.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Encéfalo/patología , Neoplasias Cerebelosas/patología , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Modelos Animales de Enfermedad , Proteínas de Homeodominio , Inmunoterapia , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/terapia , Ratones , Ratones Endogámicos C57BL , Células Mieloides/patología , Microambiente Tumoral
16.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477420

RESUMEN

Children with medulloblastoma and ependymoma are treated with a multidisciplinary approach that incorporates surgery, radiotherapy, and chemotherapy; however, overall survival rates for patients with high-risk disease remain unsatisfactory. Data indicate that plant-derived cannabinoids are effective against adult glioblastoma; however, preclinical evidence supporting their use in pediatric brain cancers is lacking. Here we investigated the potential role for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in medulloblastoma and ependymoma. Dose-dependent cytotoxicity of medulloblastoma and ependymoma cells was induced by THC and CBD in vitro, and a synergistic reduction in viability was observed when both drugs were combined. Mechanistically, cannabinoids induced cell cycle arrest, in part by the production of reactive oxygen species, autophagy, and apoptosis; however, this did not translate to increased survival in orthotopic transplant models despite being well tolerated. We also tested the combination of cannabinoids with the medulloblastoma drug cyclophosphamide, and despite some in vitro synergism, no survival advantage was observed in vivo. Consequently, clinical benefit from the use of cannabinoids in the treatment of high-grade medulloblastoma and ependymoma is expected to be limited. This study emphasizes the importance of preclinical models in validating therapeutic agent efficacy prior to clinical trials, ensuring that enrolled patients are afforded the most promising therapies available.

17.
Front Immunol ; 11: 601494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424847

RESUMEN

We recently reported that offspring of mice treated during pregnancy with the microbial-derived immunomodulator OM-85 manifest striking resistance to allergic airways inflammation, and localized the potential treatment target to fetal conventional dendritic cell (cDC) progenitors. Here, we profile maternal OM-85 treatment-associated transcriptomic signatures in fetal bone marrow, and identify a series of immunometabolic pathways which provide essential metabolites for accelerated myelopoiesis. Additionally, the cDC progenitor compartment displayed treatment-associated activation of the XBP1-ERN1 signalling axis which has been shown to be crucial for tissue survival of cDC, particularly within the lungs. Our forerunner studies indicate uniquely rapid turnover of airway mucosal cDCs at baseline, with further large-scale upregulation of population dynamics during aeroallergen and/or pathogen challenge. We suggest that enhanced capacity for XBP1-ERN1-dependent cDC survival within the airway mucosal tissue microenvironment may be a crucial element of OM-85-mediated transplacental innate immune training which results in postnatal resistance to airway inflammatory disease.


Asunto(s)
Extractos Celulares/farmacología , Células Dendríticas/efectos de los fármacos , Endorribonucleasas/metabolismo , Inmunidad Innata/efectos de los fármacos , Intercambio Materno-Fetal/efectos de los fármacos , Células Progenitoras Mieloides/efectos de los fármacos , Placenta/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endorribonucleasas/genética , Femenino , Redes Reguladoras de Genes , Ratones Endogámicos BALB C , Células Progenitoras Mieloides/inmunología , Células Progenitoras Mieloides/metabolismo , Mielopoyesis/efectos de los fármacos , Placenta/inmunología , Placenta/metabolismo , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Transcriptoma , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética
18.
Front Immunol ; 9: 1805, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30150981

RESUMEN

Allergic (Th2high immunophenotype) asthmatics have a heightened susceptibility to common respiratory viral infections such as human rhinovirus. Evidence suggests that the innate interferon response is deficient in asthmatic/atopic individuals, while other studies show no differences in antiviral response pathways. Unsensitized and OVA-sensitized/challenged Th2high (BN rats) and Th2low immunophenotype (PVG rats) animals were inoculated intranasally with attenuated mengovirus (vMC0). Sensitized animals were exposed/unexposed during the acute viral response phase. Cellular and transcriptomic profiling was performed on bronchoalveolar lavage cells. In unsensitized PVG rats, vMC0 elicits a prototypical antiviral response (neutrophilic airways inflammation, upregulation of Th1/type I interferon-related pathways). In contrast, response to infection in the Th2high BN rats was associated with a radically altered intrinsic host response to respiratory viral infection, characterized by macrophage influx/Th2-associated pathways. In sensitized animals, response to virus infection alone was not altered compared to unsensitized animals. However, allergen exposure of sensitized animals during viral infection unleashes a notably exaggerated airways inflammatory response profile orders of magnitude higher in BN versus PVG rats despite similar viral loads. The co-exposure responses in the Th2high BN incorporated type I interferon/Th1, alternative macrophage activation/Th2 and Th17 signatures. Similar factors may underlie the hyper-susceptibility to infection-associated airways inflammation characteristic of the human Th2high immunophenotype.


Asunto(s)
Hipersensibilidad Inmediata/etiología , Hipersensibilidad Inmediata/patología , Inmunidad , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/virología , Alérgenos/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Ratas , Índice de Severidad de la Enfermedad , Carga Viral
19.
Sci Rep ; 8(1): 1511, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367592

RESUMEN

Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDMS) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDMS-wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics.


Asunto(s)
Alérgenos/metabolismo , Asma/patología , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Esputo/citología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA