Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(6): 3627-3638, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867781

RESUMEN

Deep venous thrombosis (DVT) is a medical condition with significant post-event morbidity and mortality coupled with limited treatment options. Treatment strategy and efficacy are highly dependent on the structural composition of the thrombus, which evolves over time from initial formation and is currently unevaluable with standard clinical testing. Here, we investigate the use of intravascular polarization-sensitive optical coherence tomography (PS-OCT) to assess thrombus morphology and composition in a rat DVT model in-vivo, including changes that occur over the thrombus aging process. PS-OCT measures tissue birefringence, which provides contrast for collagen and smooth muscle cells that are present in older, chronic clots. Thrombi in the inferior vena cava of two cohorts of rats were imaged in-vivo with intravascular PS-OCT at 24 hours (acute, nrats = 3, 73 cross-sections) or 28 days (chronic, nrats = 4, 41 cross-sections) after thrombus formation. Co-registered histology was labelled by an independent pathologist to establish ground-truth clot composition. Automated analysis of OCT cross-sectional images differentiated acute and chronic thrombi with 97.6% sensitivity and 98.6% specificity using a linear discriminant model comprised of both polarization and conventional OCT metrics. These results support PS-OCT as a highly sensitive imaging modality for the assessment of DVT composition to differentiate acute and chronic thrombi. Intravascular PS-OCT imaging could be integrated with advanced catheter-based treatment strategies and serve to guide therapeutic decision-making and deployment, by offering an accurate assessment of DVT patients in real time.

2.
Biomed Opt Express ; 14(9): 4609-4626, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791262

RESUMEN

Intravascular polarimetry with catheter-based polarization-sensitive optical coherence tomography (PS-OCT) complements the high-resolution structural tomograms of OCT with morphological contrast available through polarimetry. Its clinical translation has been complicated by the need for modification of conventional OCT hardware to enable polarimetric measurements. Here, we present a signal processing method to reconstruct the polarization properties of tissue from measurements with a single input polarization state, bypassing the need for modulation or multiplexing of input states. Our method relies on a polarization symmetry intrinsic to round-trip measurements and uses the residual spectral variation of the polarization states incident on the tissue to avoid measurement ambiguities. We demonstrate depth-resolved birefringence and optic axis orientation maps reconstructed from in-vivo data of human coronary arteries. We validate our method through comparison with conventional dual-input state measurements and find a mean cumulative retardance error of 13.2deg without observable bias. The 95% limit of agreement between depth-resolved birefringence is 2.80 · 10-4, which is less than the agreement between two repeat pullbacks of conventional PS-OCT (3.14 · 10-4), indicating that the two methods can be used interchangeably. The hardware simplification arising from using a single input state may be decisive in realizing the potential of polarimetric measurements for assessing coronary atherosclerosis in clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA