Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Theor Biol ; 525: 110763, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34000285

RESUMEN

The retina is a part of the central nervous system that is accessible, well documented, and studied by researchers spanning the clinical, experimental, and theoretical sciences. Here, we mathematically model the subcircuits of the outer plexiform layer of the retina on two spatial scales: that of an individual synapse and that of the scale of the receptive field (hundreds to thousands of synapses). To this end we formulate a continuum spine model (a partial differential equation system) that incorporates the horizontal cell syncytium and its numerous processes (spines) within cone pedicles. With this multiscale modeling approach, detailed biophysical mechanisms at the synaptic level are retained while scaling up to the receptive field level. As an example of its utility, the model is applied to study background-induced flicker enhancement in which the onset of a dim background enhances the center flicker response of horizontal cells. Simulation results, in comparison with flicker enhancement data for square, slit, and disk test regions, suggest that feedback mechanisms that are voltage-axis modulators of cone calcium channels (for example, ephaptic and/or pH feedback) are robust in capturing the temporal dynamics of background-induced flicker enhancement. The value and potential of this continuum spine approach is that it provides a framework for mathematically modeling the input-output properties of the entire receptive field of the outer retina while implementing the latest models for transmission mechanisms at the synaptic level.


Asunto(s)
Retina , Células Fotorreceptoras Retinianas Conos , Animales , Retroalimentación Fisiológica , Sinapsis , Vertebrados
2.
J Comput Neurosci ; 38(1): 129-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25260382

RESUMEN

Experimental evidence suggests the existence of a negative feedback pathway between horizontal cells and cone photoreceptors in the outer plexiform layer of the retina that modulates the flow of calcium ions into the synaptic terminals of cones. However, the underlying mechanism for this feedback is controversial and there are currently three competing hypotheses: the ephaptic hypothesis, the pH hypothesis, and the GABA hypothesis. The goal of this investigation is to demonstrate the ephaptic hypothesis by means of detailed numerical simulations. The drift-diffusion (Poisson-Nernst-Planck) model with membrane boundary current equations is applied to a realistic two-dimensional cross-section of the triad synapse in the goldfish retina to verify the existence of strictly electrical feedback, as predicted by the ephaptic hypothesis. The effect on electrical feedback from the behavior of the bipolar cell membrane potential is also explored. The computed steady-state cone calcium transmembrane current-voltage curves for several cases are presented and compared with experimental data on goldfish. The results provide convincing evidence that an ephaptic mechanism can produce the feedback effect seen in experiments. The model and numerical methods presented here can be applied to any neuronal circuit where dendritic spines are invaginated in presynaptic terminals or boutons.


Asunto(s)
Simulación por Computador , Retroalimentación Fisiológica/fisiología , Modelos Neurológicos , Neuronas/fisiología , Retina/citología , Sinapsis/fisiología , Animales , Carpa Dorada , Transmisión Sináptica/fisiología , Vías Visuales/fisiología
3.
J Theor Biol ; 291: 10-3, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21945149

RESUMEN

The drift-diffusion (Poisson-Nernst-Planck) model is applied to the potassium channel in a biological membrane plus surrounding solution baths. Two-dimensional cylindrically symmetric simulations of the K channel in KCl solutions are presented which show significant boundary layers at the ends of the channel and display the spreading of charge into the bath regions. The computed current-voltage curve shows excellent agreement with experimental measurements. In addition, the response of the K channel to time-dependent applied voltages is investigated.


Asunto(s)
Modelos Biológicos , Canales de Potasio/fisiología , Animales , Difusión , Conductividad Eléctrica , Estimulación Eléctrica , Activación del Canal Iónico/fisiología , Cloruro de Potasio
4.
Mol Genet Genomic Med ; 2(6): 522-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25614874

RESUMEN

We report the frequency, positive rate, and type of mutations in 14 genes (PMP22, GJB1, MPZ, MFN2, SH3TC2, GDAP1, NEFL, LITAF, GARS, HSPB1, FIG4, EGR2, PRX, and RAB7A) associated with Charcot-Marie-Tooth disease (CMT) in a cohort of 17,880 individuals referred to a commercial genetic testing laboratory. Deidentified results from sequencing assays and multiplex ligation-dependent probe amplification (MLPA) were analyzed including 100,102 Sanger sequencing, 2338 next-generation sequencing (NGS), and 21,990 MLPA assays. Genetic abnormalities were identified in 18.5% (n = 3312) of all individuals. Testing by Sanger and MLPA (n = 3216) showed that duplications (dup) (56.7%) or deletions (del) (21.9%) in the PMP22 gene accounted for the majority of positive findings followed by mutations in the GJB1 (6.7%), MPZ (5.3%), and MFN2 (4.3%) genes. GJB1 del and mutations in the remaining genes explained 5.3% of the abnormalities. Pathogenic mutations were distributed as follows: missense (70.6%), nonsense (14.3%), frameshift (8.7%), splicing (3.3%), in-frame deletions/insertions (1.8%), initiator methionine mutations (0.8%), and nonstop changes (0.5%). Mutation frequencies, positive rates, and the types of mutations were similar between tests performed by either Sanger (n = 17,377) or NGS (n = 503). Among patients with a positive genetic finding in a CMT-related gene, 94.9% were positive in one of four genes (PMP22, GJB1, MPZ, or MFN2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA