Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 147(4): 884-92, 2007 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-17600630

RESUMEN

It is becoming clear that the detection and integration of synaptic input and its conversion into an output signal in cortical neurons are strongly influenced by background synaptic activity or "noise." The majority of this noise results from the spontaneous release of synaptic transmitters, interacting with ligand-gated ion channels in the postsynaptic neuron [Berretta N, Jones RSG (1996); A comparison of spontaneous synaptic EPSCs in layer V and layer II neurones in the rat entorhinal cortex in vitro. J Neurophysiol 76:1089-1110; Jones RSG, Woodhall GL (2005) Background synaptic activity in rat entorhinal cortical neurons: differential control of transmitter release by presynaptic receptors. J Physiol 562:107-120; LoTurco JJ, Mody I, Kriegstein AR (1990) Differential activation of glutamate receptors by spontaneously released transmitter in slices of neocortex. Neurosci Lett 114:265-271; Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142-150; Ropert N, Miles R, Korn H (1990) Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J Physiol 428:707-722; Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573-1588; Staley KJ (1999) Quantal GABA release: noise or not? Nat Neurosci 2:494-495; Woodhall GL, Bailey SJ, Thompson SE, Evans DIP, Stacey AE, Jones RSG (2005) Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus 15:232-245]. The function of synaptic noise has been the subject of debate for some years, but there is increasing evidence that it modifies or controls neuronal excitability and, thus, the integrative properties of cortical neurons. In the present study we have investigated a novel approach [Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884-2896] to simultaneously quantify synaptic inhibitory and excitatory synaptic noise, together with postsynaptic excitability, in rat entorhinal cortical neurons in vitro. The results suggest that this is a viable and useful approach to the study of the function of synaptic noise in cortical networks.


Asunto(s)
Corteza Entorrinal/citología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
2.
Neuroscience ; 148(1): 7-21, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17630217

RESUMEN

Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, and found a differential regulation of action potential-dependent and independent forms of release. Activation of presynaptic mGluRs depressed the amplitude of stimulus-evoked excitatory postsynaptic currents, but concurrently enhanced the frequency of spontaneous excitatory currents. Moreover, these differential effects on glutamate release were mediated by pharmacologically separable mechanisms. Application of the specific activator of adenylyl cyclase, forskolin, mimicked the effect of mGluR activation on spontaneous, but not evoked release, and inhibition of adenylyl cyclase with 9-tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) blocked mGluR-mediated enhancement of spontaneous release, but not depression of evoked release. Occlusion studies with calcium channel blockers suggested that the group III mGluRs might depress evoked release through inhibition of both N and P/Q, but not R-type calcium channels. We suggest that the concurrent depression of action potential-evoked, and enhancement of action potential-independent glutamate release operate through discrete second messenger/effector systems at excitatory entorhinal terminals in rat brain.


Asunto(s)
Corteza Entorrinal/metabolismo , Ácido Glutámico/metabolismo , Vías Nerviosas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Estimulación Eléctrica , Corteza Entorrinal/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Vías Nerviosas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
3.
Neuroscience ; 115(2): 575-86, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12421623

RESUMEN

We have previously shown that activation of neurokinin-1 receptors reduces acutely provoked epileptiform activity in rat entorhinal cortex in vitro, and suggested that this may result from an increase in GABA release from inhibitory interneurones. In the present study we have made whole cell patch clamp recordings of spontaneous GABA-mediated inhibitory postsynaptic currents as an indicator of GABA release in slices of rat entorhinal cortex, and determined the effects of neurokinin receptor activation on this release. The neurokinin-1 receptor agonists septide and GR73632 provoked a robust increase in the frequency of GABA-mediated currents, and an increase in mean amplitude. The effects were mimicked by substance P, and blocked by a neurokinin-1 receptor antagonist. High concentrations of neurokinin A had similar effects, which were also blocked by the neurokinin-1 receptor antagonist, but agonists at neurokinin-2 or neurokinin-3 receptors were ineffective. The increases in amplitude and frequency of events provoked by septide were prevented by prior blockade of action potential-dependent release with tetrodotoxin. In current clamp recordings from putative interneurones, GR73632 evoked depolarisation and a prolonged discharge of action potentials. Finally, recordings from pyramidal neurones and oriens-alveus interneurones in CA1 of the hippocampus showed that application of GR73632 caused an increase in frequency and amplitude of GABA-mediated inhibitory postsynaptic currents in the former and persistent firing of action potentials in the latter. The results demonstrate that neurokinin-1 receptor activation promotes the release of GABA at synapses on principal neurones in both entorhinal cortex and hippocampus. The abolition of this effect by tetrodotoxin and the excitatory responses seen in interneurones clearly suggest that the neurokinin-1 receptor is localised on the soma-dendritic domain of the inhibitory neurones. Thus, substance P inputs to inhibitory neurones may have a widespread influence on cortical network excitability and could play a role in epileptogenesis and its control.


Asunto(s)
Corteza Entorrinal/fisiología , Receptores de Neuroquinina-1/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Corteza Entorrinal/citología , Hipocampo/citología , Hipocampo/fisiología , Interneuronas/fisiología , Masculino , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Neuroquinina A/farmacología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Neuroquinina-1/agonistas , Receptores de Neuroquinina-2/metabolismo , Receptores de Neuroquinina-3/metabolismo
4.
Neuroscience ; 127(2): 467-79, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15262336

RESUMEN

Neurokinins such as substance P and neurokinin A have long been thought to act as neurotransmitters or modulators in the nucleus tractus solitarius. However, the role and location of the receptors for these peptides have remained unclear. We examined the consequences of activation of the neurokinin-1 (NK1) receptor subtype in the rat nucleus tractus solitarius using whole-cell patch clamp recordings in brain slices. Application of delta-Ala-Phe-Phe-Pro-MeLeu-D-Pro[spiro-gamma-lactam]-Leu-Trp-NH2 (a specific NK1 agonist) or neurokinin A resulted in depolarization, evident as a slow inward current, mediated by direct postsynaptic NK1 receptor activation. The effect was conserved in the presence of tetrodotoxin, and protein kinase C-dependent since it was blocked by 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide, a specific protein kinase C inhibitor. In addition, an increase in the frequency and amplitude of spontaneous excitatory postsynaptic currents was observed, reflecting increased glutamate release induced by NK1 receptor activation. This effect was abolished by tetrodotoxin, suggesting that it resulted from increased firing in afferent neurons, subsequent to somatodendritic excitation via NK1 receptors. Furthermore, spontaneous inhibitory postsynaptic currents were increased in frequency and amplitude showing that GABA release was promoted by NK1 receptor activation. However, amplitude of miniature inhibitory postsynaptic currents was unaltered by NK1 receptor activation, but the increase in frequency persisted. These findings suggest that NK1 receptors are located on presynaptic terminals as well as at somatodendritic sites of GABAergic neurons. The increase in GABA release was also shown to be protein kinase C-dependent. The data presented here show NK1 receptors in the rat nucleus tractus solitarius are present both excitatory and inhibitory neurons. Activation of these receptors can result in increases in release of both GABA and glutamate, suggesting a crucial modulatory role for NK1 receptors in the rat nucleus tractus solitarius.


Asunto(s)
Ácido Glutámico/metabolismo , Receptores de Neuroquinina-1/metabolismo , Núcleo Solitario/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Vías Aferentes/ultraestructura , Animales , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/ultraestructura , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuroquinina A/farmacología , Neuropéptidos/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptores de Neuroquinina-1/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/ultraestructura , Sustancia P/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos
5.
Neuroscience ; 167(2): 456-74, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20167261

RESUMEN

Although most anti-epileptic drugs are considered to have a primary molecular target, it is clear that their actions are unlikely to be limited to effects on a single aspect of inhibitory synaptic transmission, excitatory transmission or voltage-gated ion channels. Systemically administered drugs can obviously simultaneously access all possible targets, so we have attempted to determine the overall effect of diverse agents on the balance between GABAergic inhibition, glutamatergic excitation and cellular excitability in neurones of the rat entorhinal cortex in vitro. We used an approach developed for estimating global background synaptic excitation and inhibition from fluctuations in membrane potential obtained by intracellular recordings. We have previously validated this approach in entorhinal cortical neurones [Greenhill and Jones (2007a) Neuroscience 147:884-892]. Using this approach, we found that, despite their differing pharmacology, the drugs tested (phenytoin, lamotrigine, valproate, gabapentin, felbamate, tiagabine) were unified in their ability to increase the ratio of background GABAergic inhibition to glutamatergic excitation. This could occur as a result of decreased excitation concurrent with increased inhibition (phenytoin, lamotrigine, valproate), a decrease in excitation alone (gabapentin, felbamate), or even with a differential increase in both (tiagabine). Additionally, we found that the effects on global synaptic conductances agreed well with whole cell patch recordings of spontaneous glutamate and GABA release (our previous studies and further data presented here). The consistency with which the synaptic inhibition:excitation ratio was increased by the antiepileptic drugs tested was matched by an ability of all drugs to concurrently reduce intrinsic neuronal excitability. Thus, it seems possible that specific molecular targets among antiepileptic drugs are less important than the ability to increase the inhibition:excitation ratio and reduce overall neuronal and network excitability.


Asunto(s)
Anticonvulsivantes/farmacología , Corteza Entorrinal/efectos de los fármacos , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Corteza Entorrinal/fisiología , Técnicas In Vitro , Masculino , Inhibición Neural , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
6.
Proc Natl Acad Sci U S A ; 103(14): 5597-601, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-16565217

RESUMEN

The level of arousal in mammals is correlated with metabolic state and specific patterns of cortical neuronal responsivity. In particular, rhythmic transitions between periods of high activity (up phases) and low activity (down phases) vary between wakefulness and deep sleep/anesthesia. Current opinion about changes in cortical response state between sleep and wakefulness is split between neuronal network-mediated mechanisms and neuronal metabolism-related mechanisms. Here, we demonstrate that slow oscillations in network state are a consequence of interactions between both mechanisms. Specifically, recurrent networks of excitatory neurons, whose membrane potential is partly governed by ATP-modulated potassium (K(ATP)) channels, mediate response-state oscillations via the interaction between excitatory network activity involving slow, kainate receptor-mediated events and the resulting activation of ATP-dependent homeostatic mechanisms. These findings suggest that K(ATP) channels function as an interface between neuronal metabolic state and network responsivity in mammalian cortex.


Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa , Neuronas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Canales de Potasio/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA