Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Respir J ; 62(1)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343976

RESUMEN

BACKGROUND: Early ecological studies have suggested links between air pollution and risk of coronavirus disease 2019 (COVID-19), but evidence from individual-level cohort studies is still sparse. We examined whether long-term exposure to air pollution is associated with risk of COVID-19 and who is most susceptible. METHODS: We followed 3 721 810 Danish residents aged ≥30 years on 1 March 2020 in the National COVID-19 Surveillance System until the date of first positive test (incidence), COVID-19 hospitalisation or death until 26 April 2021. We estimated residential annual mean particulate matter with diameter ≤2.5 µm (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) in 2019 by the Danish DEHM/UBM model, and used Cox proportional hazards regression models to estimate the associations of air pollutants with COVID-19 outcomes, adjusting for age, sex, individual- and area-level socioeconomic status, and population density. RESULTS: 138 742 individuals were infected, 11 270 were hospitalised and 2557 died from COVID-19 during 14 months. We detected associations of PM2.5 (per 0.53 µg·m-3) and NO2 (per 3.59 µg·m-3) with COVID-19 incidence (hazard ratio (HR) 1.10 (95% CI 1.05-1.14) and HR 1.18 (95% CI 1.14-1.23), respectively), hospitalisations (HR 1.09 (95% CI 1.01-1.17) and HR 1.19 (95% CI 1.12-1.27), respectively) and death (HR 1.23 (95% CI 1.04-1.44) and HR 1.18 (95% CI 1.03-1.34), respectively), which were strongest in the lowest socioeconomic groups and among patients with chronic respiratory, cardiometabolic and neurodegenerative diseases. We found positive associations with BC and negative associations with O3. CONCLUSION: Long-term exposure to air pollution may contribute to increased risk of contracting severe acute respiratory syndrome coronavirus 2 infection as well as developing severe COVID-19 disease requiring hospitalisation or resulting in death.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Estudios de Cohortes , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , SARS-CoV-2 , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Hospitalización , Hollín , Dinamarca/epidemiología
2.
Am J Respir Crit Care Med ; 205(12): 1429-1439, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35258439

RESUMEN

Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 µg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gripe Humana , Neumonía , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Dióxido de Nitrógeno/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis
3.
Int J Cancer ; 150(1): 38-46, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34449872

RESUMEN

Worldwide, colorectal cancer is the second most common cancer and third cause of cancer death in women. Estrogen exposure has been inversely associated with colorectal cancer. Oophorectomy reduces circulating estrogen, but the effect on colorectal cancer remains uncertain. The aim of this study was to examine the association between unilateral and bilateral oophorectomy and subsequent risk of colorectal cancer, and whether this association varied by menopausal status at time of oophorectomy, use of hormone replacement therapy (HRT) at baseline, hysterectomy and baseline body mass index (BMI). The study included 25 698 female nurses (aged ≥45 years) participating in the Danish Nurse Cohort. Nurses were followed from baseline until date of colorectal cancer, death, emigration or end of follow-up at December 31, 2018, whichever came first. We examined the association between oophorectomy and colorectal cancer (all ages and stratified by menopausal status). The potential modifying effects of hysterectomy, HRT use at baseline and BMI were investigated. During 542 140 person-years of follow-up, 863 (3.4%) nurses were diagnosed with colorectal cancer. Bilateral oophorectomy was associated with a 79% increased colorectal cancer rate, adjusted rate ratio (aRR) (95% confidence interval [CI]): 1.79 (1.33-2.42). Effect estimates following unilateral oophorectomy also showed higher rate of colorectal cancer, although less pronounced and nonstatistically significant (aRR) (95% CI): 1.25 (0.86-1.82). Similar results were seen when stratifying by menopausal status. The association was not modified by baseline HRT use, hysterectomy or BMI. Oophorectomy was associated with increased rate of colorectal cancer, with highest rates among women with bilateral oophorectomy.


Asunto(s)
Índice de Masa Corporal , Neoplasias Colorrectales/epidemiología , Terapia de Reemplazo de Hormonas/efectos adversos , Histerectomía/efectos adversos , Ovariectomía/efectos adversos , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo
4.
Br J Cancer ; 126(10): 1499-1507, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35173304

RESUMEN

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias de la Vejiga Urinaria , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Incidencia , Masculino , Dióxido de Nitrógeno , Material Particulado/efectos adversos , Enfermedades Raras , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/etiología , Zinc
5.
Environ Sci Technol ; 56(17): 12086-12096, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35968717

RESUMEN

The COVID-19 containment response policies (CRPs) had a major impact on air quality (AQ). These CRPs have been time-varying and location-specific. So far, despite having numerous studies on the effect of COVID-19 lockdown on AQ, a knowledge gap remains on the association between stringency of CRPs and AQ changes across the world, regions, nations, and cities. Here, we show that globally across 1851 cities (each more than 300 000 people) in 149 countries, after controlling for the impacts of relevant covariates (e.g., meteorology), Sentinel-5P satellite-observed nitrogen dioxide (NO2) levels decreased by 4.9% (95% CI: 2.2, 7.6%) during lockdowns following stringent CRPs compared to pre-CRPs. The NO2 levels did not change significantly during moderate CRPs and even increased during mild CRPs by 2.3% (95% CI: 0.7, 4.0%), which was 6.8% (95% CI: 2.0, 12.0%) across Europe and Central Asia, possibly due to population avoidance of public transportation in favor of private transportation. Among 1768 cities implementing stringent CRPs, we observed the most NO2 reduction in more populated and polluted cities. Our results demonstrate that AQ improved when and where stringent COVID-19 CRPs were implemented, changed less under moderate CRPs, and even deteriorated under mild CRPs. These changes were location-, region-, and CRP-specific.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , COVID-19/epidemiología , Ciudades/epidemiología , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Políticas , SARS-CoV-2
6.
Environ Sci Technol ; 56(13): 9277-9290, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35737879

RESUMEN

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisis
7.
Environ Res ; 215(Pt 2): 114385, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36154858

RESUMEN

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 µg/m3 (12.8-39.2), 15.3 µg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 µg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 µg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 µg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 µg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Renales , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Carbono/análisis , Carcinógenos/análisis , Cobre/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Europa (Continente)/epidemiología , Humanos , Hierro/análisis , Riñón , Neoplasias Renales/inducido químicamente , Neoplasias Renales/epidemiología , Níquel , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Ozono/análisis , Material Particulado/análisis , Material Particulado/toxicidad , Potasio/análisis , Silicio , Hollín/análisis , Azufre/análisis , Vanadio , Emisiones de Vehículos/análisis , Zinc/análisis
8.
Indoor Air ; 32(8): e13086, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040281

RESUMEN

Burning candles at home emit small particles and gases that pollute indoor air. Exposure to fine particles in outdoor air has been convincingly linked to cardiovascular and respiratory events, while the associations with fine and ultrafine particles from candle burning remain unexplored. We examined the association between the use of candles and incident cardiovascular and respiratory events. We collected data on 6757 participants of the Copenhagen Aging and Midlife Biobank cohort recruited in 2009 and followed them up for the first hospital contact for incident cardiovascular and respiratory events until 2018. We investigated an association between the self-reported frequency of candle use in wintertime and cardiovascular and respiratory events, using Cox regression models adjusting for potential confounders. During follow-up, 1462 and 834 were admitted for cardiovascular and respiratory events, respectively. We found null associations between candle use and a hospital contact due to cardiovascular and respiratory events, with hazard ratios (HRs) and 95% confidence intervals (CI) of 0.97 (95% CI: 0.84, 1.11) and 0.98 (95% CI: 0.81, 1.18), respectively, among those using candles >4 times/week compared with <1 time/week. For cause-specific cardiovascular diseases, HRs were 1.10 (95% CI: 0.85, 1.43) for ischemic heart disease and 1.18 (95% CI: 0.77, 1.81) for myocardial infarction. For chronic obstructive pulmonary disease, HR was 1.26 (95% CI: 0.81, 1.97). We found no statistically significant associations between candle use and the risk of cardiovascular and respiratory events. Studies with improved exposure assessments are warranted.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Estudios de Cohortes , Dinamarca/epidemiología , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis
9.
Int J Cancer ; 149(3): 585-593, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33729548

RESUMEN

The association between oophorectomy and risk of breast cancer in the general population is uncertain. The aim of our study was to determine the breast cancer rate in women from the general population after oophorectomy (performed before/after menopause), and whether this varies by use of hormone replacement therapy (HRT), hysterectomy, body mass index (BMI) and shift work. The study included 24 409 female nurses (aged ≥45 years) participating in the Danish Nurse Cohort. Nurses were followed from cohort entry until date of breast cancer, death, emigration or end of follow-up at 31 December 2018, whichever came first. Poisson regression with log-transformed person-years as the offset examined the association between oophorectomy and breast cancer (all ages and stratified by menopausal status at time of oophorectomy). The potential modifying effect of HRT use, hysterectomy, BMI and shift work on the associations was estimated. During 502 463 person-years of follow-up, 1975 (8.1%) nurses were diagnosed with breast cancer. Bilateral oophorectomy was associated with a reduced breast cancer rate compared to nurses with preserved ovaries, adjusted rate ratio (95% confidence interval): 0.79 (0.64; 0.99). Similar associations (magnitude and direction) were detected for unilateral oophorectomy and when stratifying according to menopausal status at time of oophorectomy, but without statistical significance. Unilateral and bilateral oophorectomy is associated with a reduced breast cancer rate in women from the general population. This association is not modified by use of HRT, hysterectomy, BMI or shift work.


Asunto(s)
Neoplasias de la Mama/epidemiología , Terapia de Reemplazo de Hormonas/efectos adversos , Histerectomía/efectos adversos , Menopausia , Ovariectomía/efectos adversos , Adulto , Anciano , Índice de Masa Corporal , Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Dinamarca/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo
10.
Int J Cancer ; 149(11): 1887-1897, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34278567

RESUMEN

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.


Asunto(s)
Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Hepáticas/etiología , Adulto , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente)/epidemiología , Femenino , Humanos , Incidencia , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Material Particulado/toxicidad , Modelos de Riesgos Proporcionales
11.
Eur Respir J ; 58(6)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33986028

RESUMEN

BACKGROUND: While air pollution has been linked to the development of chronic obstructive pulmonary disease (COPD), evidence on the role of environmental noise is just emerging. We examined the associations of long-term exposure to air pollution and road traffic noise with COPD incidence. METHODS: We defined COPD incidence for 24 538 female nurses from the Danish Nurse Cohort (age >44 years) as the first hospital contact between baseline (1993 or 1999) and 2015. We estimated residential annual mean concentrations of particulate matter with an aerodynamic diameter <2.5 µm (PM2.5) since 1990 and nitrogen dioxide (NO2) since 1970 using the Danish Eulerian Hemispheric Model/Urban Background Model/Air Geographic Information System modelling system, and road traffic noise (Lden) since 1970 using the Nord2000 model. Time-varying Cox regression models were applied to assess the associations of air pollution and road traffic noise with COPD incidence. RESULTS: 977 nurses developed COPD during a mean of 18.6 years' follow-up. We observed associations with COPD for all three exposures with HRs and 95% CIs of 1.19 (1.01-1.41) per 6.26 µg·m-3 for PM2.5, 1.13 (1.05-1.20) per 8.19 µg·m-3 for NO2 and 1.15 (1.06-1.25) per 10 dB for Lden. Associations with NO2 and Lden attenuated slightly after mutual adjustment, but were robust to adjustment for PM2.5. Associations with PM2.5 were attenuated to null after adjustment for either NO2 or Lden. No potential interaction effect was observed between air pollutants and noise. CONCLUSION: Long-term exposure to air pollution, especially traffic-related NO2, and to road traffic noise were independently associated with COPD.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ruido del Transporte , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Dinamarca/epidemiología , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Humanos , Dióxido de Nitrógeno/análisis , Ruido del Transporte/estadística & datos numéricos , Material Particulado/análisis , Material Particulado/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología
12.
Eur Respir J ; 57(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088754

RESUMEN

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Niño , Exposición a Riesgos Ambientales/análisis , Europa (Continente) , Humanos , Incidencia , Material Particulado/análisis , Suecia
13.
Environ Res ; 194: 110631, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345898

RESUMEN

BACKGROUND: Knowledge of the role of melatonin, xenograft experiments, and epidemiological studies suggests that exposure to light at night (LAN) may disturb circadian rhythms, possibly increasing the risk of developing breast cancer. OBJECTIVES: We examined the association between residential outdoor LAN and the incidence of breast cancer: overall and subtypes classified by estrogen (ER) and progesterone (PR) receptor status. METHODS: We used data on 16,941 nurses from the Danish Nurse Cohort who were followed-up from the cohort baseline in 1993 or 1999 through 2012 in the Danish Cancer Registry for breast cancer incidence and the Danish Breast Cancer Cooperative Group for breast cancer ER and PR status. LAN exposure data were obtained from the U.S. Defense Meteorological Satellite Program (DMSP) available for 1996, 1999, 2000, 2003, 2004, 2006, and 2010 in nW/cm2/sr unit, and assigned to the study participants' residence addresses during the follow-up. Time-varying Cox regression models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between LAN and breast cancer, adjusting for individual characteristics, road traffic noise, and air pollution. RESULTS: Of 16,941 nurses, 745 developed breast cancer in total during 320,289 person-years of follow-up. We found no association between exposure to LAN and overall breast cancer. In the fully adjusted models, HRs for the highest (65.8-446.4 nW/cm2/sr) and medium (22.0-65.7 nW/cm2/sr) LAN tertiles were 0.97 (95% CI: 0.77, 1.23) and 1.09 (95% CI: 0.90, 1.31), respectively, compared to the lowest tertile of LAN exposure (0-21.9 nW/cm2/sr). We found a suggestive association between LAN and ER-breast cancer. CONCLUSION: This large cohort study of Danish female nurses suggests weak evidence of the association between LAN and breast cancer incidence.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Ritmo Circadiano , Estudios de Cohortes , Dinamarca/epidemiología , Femenino , Humanos , Incidencia , Luz , Factores de Riesgo
14.
Environ Res ; 193: 110568, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278469

RESUMEN

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Pulmonares , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Europa (Continente)/epidemiología , Humanos , Incidencia , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Material Particulado/análisis
15.
Environ Health ; 20(1): 115, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34740347

RESUMEN

BACKGROUND: Road traffic noise has been linked to increased risk of ischemic heart disease, yet evidence on stroke shows mixed results. We examine the association between long-term exposure to road traffic noise and incidence of stroke, overall and by subtype (ischemic or hemorrhagic), after adjustment for air pollution. METHODS: Twenty-five thousand six hundred and sixty female nurses from the Danish Nurse Cohort recruited in 1993 or 1999 were followed for stroke-related first-ever hospital contact until December 31st, 2014. Full residential address histories since 1970 were obtained and annual means of road traffic noise (Lden [dB]) and air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm [PM2.5 and PM10], nitrogen dioxide [NO2], nitrogen oxides [NOx]) were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals [CI]) for the associations of one-, three-, and 23-year running means of Lden preceding stroke (all, ischemic or hemorrhagic), adjusting for stroke risk factors and air pollutants. The World Health Organization and the Danish government's maximum exposure recommendations of 53 and 58 dB, respectively, were explored as potential Lden thresholds. RESULTS: Of 25,660 nurses, 1237 developed their first stroke (1089 ischemic, 148 hemorrhagic) during 16 years mean follow-up. For associations between a 1-year mean of Lden and overall stroke incidence, the estimated HR (95% CI) in the fully adjusted model was 1.06 (0.98-1.14) per 10 dB, which attenuated to 1.01 (0.93-1.09) and 1.00 (0.91-1.09) in models further adjusted for PM2.5 or NO2, respectively. Associations for other exposure periods or separately for ischemic or hemorrhagic stroke were similar. There was no evidence of a threshold association between Lden and stroke. CONCLUSIONS: Long-term exposure to road traffic noise was suggestively positively associated with the risk of overall stroke, although not after adjusting for air pollution.


Asunto(s)
Exposición a Riesgos Ambientales , Ruido del Transporte , Accidente Cerebrovascular , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Estudios de Cohortes , Dinamarca/epidemiología , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Humanos , Incidencia , Ruido del Transporte/efectos adversos , Ruido del Transporte/estadística & datos numéricos , Material Particulado/análisis , Material Particulado/toxicidad , Accidente Cerebrovascular/epidemiología
16.
Res Rep Health Eff Inst ; (208): 1-127, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-36106702

RESUMEN

INTRODUCTION: Epidemiological cohort studies have consistently found associations between long-term exposure to outdoor air pollution and a range of morbidity and mortality endpoints. Recent evaluations by the World Health Organization and the Global Burden of Disease study have suggested that these associations may be nonlinear and may persist at very low concentrations. Studies conducted in North America in particular have suggested that associations with mortality persisted at concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) well below current air quality standards and guidelines. The uncertainty about the shape of the concentration-response function at the low end of the concentration distribution, related to the scarcity of observations in the lowest range, was the basis of the current project. Previous studies have focused on PM2.5, but increasingly associations with nitrogen dioxide (NO2) are being reported, particularly in studies that accounted for the fine spatial scale variation of NO2. Very few studies have evaluated the effects of long-term exposure to low concentrations of ozone (O3). Health effects of black carbon (BC), representing primary combustion particles, have not been studied in most large cohort studies of PM2.5. Cohort studies assessing health effects of particle composition, including elements from nontailpipe traffic emissions (iron, copper, and zinc) and secondary aerosol (sulfur) have been few in number and reported inconsistent results. The overall objective of our study was to investigate the shape of the relationship between long-term exposure to four pollutants (PM2.5, NO2, BC, and O3) and four broad health effect categories using a number of different methods to characterize the concentration-response function (i.e., linear, nonlinear, or threshold). The four health effect categories were (1) natural- and cause-specific mortality including cardiovascular and nonmalignant as well as malignant respiratory and diabetes mortality; and morbidity measured as (2) coronary and cerebrovascular events; (3) lung cancer incidence; and (4) asthma and chronic obstructive pulmonary disease (COPD) incidence. We additionally assessed health effects of PM2.5 composition, specifically the copper, iron, zinc, and sulfur content of PM2,5. METHODS: We focused on analyses of health effects of air pollutants at low concentrations, defined as less than current European Union (EU) Limit Values, U.S. Environmental Protection Agency (U.S. EPA), National Ambient Air Quality Standards (NAAQS), and/or World Health Organization (WHO) Air Quality Guideline values for PM2.5, NO2, and O3. We address the health effects at low air pollution levels by performing new analyses within selected cohorts of the ESCAPE study (European Study of Cohorts for Air Pollution Effects; Beelen et al. 2014a) and within seven very large European administrative cohorts. By combining well-characterized ESCAPE cohorts and large administrative cohorts in one study the strengths and weaknesses of each approach can be addressed. The large administrative cohorts are more representative of national or citywide populations, have higher statistical power, and can efficiently control for area-level confounders, but have fewer possibilities to control for individual-level confounders. The ESCAPE cohorts have detailed information on individual confounders, as well as country-specific information on area-level confounding. The data from the seven included ESCAPE cohorts and one additional non-ESCAPE cohort have been pooled and analyzed centrally. More than 300,000 adults were included in the pooled cohort from existing cohorts in Sweden, Denmark, Germany, the Netherlands, Austria, France, and Italy. Data from the administrative cohorts have been analyzed locally, without transfer to a central database. Privacy regulations prevented transfer of data from administrative cohorts to a central database. More than 28 million adults were included from national administrative cohorts in Belgium, Denmark, England, the Netherlands, Norway, and Switzerland as well as an administrative cohort in Rome, Italy. We developed central exposure assessment using Europewide hybrid land use regression (LUR) models, which incorporated European routine monitoring data for PM2.5, NO2, and O3, and ESCAPE monitoring data for BC and PM2.5 composition, land use, and traffic data supplemented with satellite observations and chemical transport model estimates. For all pollutants, we assessed exposure at a fine spatial scale, 100 × 100 m grids. These models have been applied to individual addresses of all cohorts including the administrative cohorts. In sensitivity analyses, we applied the PM2.5 models developed within the companion HEI-funded Canadian MAPLE study (Brauer et al. 2019) and O3 exposures on a larger spatial scale for comparison with previous studies. Identification of outcomes included linkage with mortality, cancer incidence, hospital discharge registries, and physician-based adjudication of cases. We analyzed natural-cause, cardiovascular, ischemic heart disease, stroke, diabetes, cardiometabolic, respiratory, and COPD mortality. We also analyzed lung cancer incidence, incidence of coronary and cerebrovascular events, and incidence of asthma and COPD (pooled cohort only). We applied the Cox proportional hazard model with increasing control for individual- and area-level covariates to analyze the associations between air pollution and mortality and/or morbidity for both the pooled cohort and the individual administrative cohorts. Age was used as the timescale because of evidence that this results in better adjustment for potential confounding by age. Censoring occurred at the time of the event of interest, death from other causes, emigration, loss to follow-up for other reasons, or at the end of follow-up, whichever came first. A priori we specified three confounder models, following the modeling methods of the ESCAPE study. Model 1 included only age (time axis), sex (as strata), and calendar year of enrollment. Model 2 added individual-level variables that were consistently available in the cohorts contributing to the pooled cohort or all variables available in the administrative cohorts, respectively. Model 3 further added area-level socioeconomic status (SES) variables. A priori model 3 was selected as the main model. All analyses in the pooled cohort were stratified by subcohort. All analyses in the administrative cohorts accounted for clustering of the data in neighborhoods by adjusting the variance of the effect estimates. The main exposure variable we analyzed was derived from the Europewide hybrid models based on 2010 monitoring data. Sensitivity analyses were conducted using earlier time periods, time-varying exposure analyses, local exposure models, and the PM2.5 models from the Canadian MAPLE project. We first specified linear single-pollutant models. Two-pollutant models were specified for all combinations of the four main pollutants. Two-pollutant models for particle composition were analyzed with PM2.5 and NO2 as the second pollutant. We then investigated the shape of the concentration-response function using natural splines with two, three, and four degrees of freedom; penalized splines with the degrees of freedom determined by the algorithm and shape-constrained health impact functions (SCHIF) using confounder model 3. Additionally, we specified linear models in subsets of the concentration range, defined by removing concentrations above a certain value from the analysis, such as for PM2.5 25 µg/m3 (EU limit value), 20, 15, 12 µg/m3 (U.S. EPA National Ambient Air Quality Standard), and 10 µg/m3 (WHO Air Quality Guideline value). Finally, threshold models were evaluated to investigate whether the associations persisted below specific concentration values. For PM2.5, we evaluated 10, 7.5, and 5 µg/m3 as potential thresholds. Performance of threshold models versus the corresponding no-threshold linear model were evaluated using the Akaike information criterion (AIC). RESULTS: In the pooled cohort, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values (25 µg/m3 and 40 µg/m3, respectively). More than 50,000 had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3). More than 25,000 subjects had a residential PM2.5 exposure below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and diabetes mortality. In our main model, the hazard ratios (HRs) (95% [confidence interval] CI) were 1.13 (CI = 1.11, 1.16) for an increase of 5 µg/m3 PM2.5, 1.09 (CI = 1.07, 1.10) for an increase of 10 µg/m3 NO2, and 1.08 (CI = 1.06, 1.10) for an increase of 0.5 × 10-5/m BC for natural-cause mortality. The highest HRs were found for diabetes mortality. Associations with O3 were negative, both in the fine spatial scale of the main ELAPSE model and in large spatial scale exposure models. For PM2.5, NO2, and BC, we generally observed a supralinear association with steeper slopes at low exposures and no evidence of a concentration below which no association was found. Subset analyses further confirmed that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. HRs were similar to the full cohort HRs for subjects with exposures below the EU limit values for PM2.5 and NO2, the U.S. NAAQS values for PM2.5, and the WHO guidelines for PM2.5 and NO2. The mortality associations were robust to alternative specifications of exposure, including different time periods, PM2.5 from the MAPLE project, and estimates from the local ESCAPE model. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. HRs in two-pollutant models were attenuated but remained elevated and statistically significant forPM2.5 and NO2. In two-pollutant models of PM2.5 and NO2 HRs for natural-cause mortality were 1.08 (CI = 1.05, 1.11) for PM2.5 and 1.05 (CI = 1.03, 1.07) for NO2. Associations with O3 were attenuated but remained negative in two-pollutant models with NO2, BC, and PM2.5. We found significant positive associations between PM2.5, NO2, and BC and incidence of stroke and asthma and COPD hospital admissions. Furthermore, NO2 was significantly related to acute coronary heart disease and PM2.5 was significantly related to lung cancer incidence. We generally observed linear to supralinear associations with no evidence of a threshold, with the exception of the association between NO2 and acute coronary heart disease, which was sublinear. Subset analyses documented that associations remained even with PM2.5 below 20 µg/m3 and possibly 12 µg/m3. Associations remained even when NO2 was below 30 µg/m3 and in some cases 20 µg/m3. In two-pollutant models, NO2 was most consistently associated with acute coronary heart disease, stroke, asthma, and COPD hospital admissions. PM2.5 was not associated with these outcomes in two-pollutant models with NO2. PM2.5 was the only pollutant that was associated with lung cancer incidence in two-pollutant models. Associations with O3 were negative though generally not statistically significant. In the administrative cohorts, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values. More than 3.9 million subjects had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3) and more than 1.9 million had residential PM2.5 exposures below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and lung cancer mortality, with moderate to high heterogeneity between cohorts. We found positive but statistically nonsignificant associations with diabetes mortality. In our main model meta-analysis, the HRs (95% CI) for natural-cause mortality were 1.05 (CI = 1.02, 1.09) for an increase of 5 µg/m3 PM2.5, 1.04 (CI = 1.02, 1.07) for an increase of 10 µg/m3 NO2, and 1.04 (CI = 1.02, 1.06) for an increase of 0.5 × 10-5/m BC, and 0.95 (CI = 0.93, 0.98) for an increase of 10 µg/m3 O3. The shape of the concentration-response functions differed between cohorts, though the associations were generally linear to supralinear, with no indication of a level below which no associations were found. Subset analyses documented that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. BC and NO2 remained significantly associated with mortality in two-pollutant models with PM2.5 and O3. The PM2.5 HR attenuated to unity in a two-pollutant model with NO2. The negative O3 association was attenuated to unity and became nonsignificant. The mortality associations were robust to alternative specifications of exposure, including time-varying exposure analyses. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. Effect estimates in the youngest participants (<65 years at baseline) were much larger than in the elderly (>65 years at baseline). Effect estimates obtained with the ELAPSE PM2.5 model did not differ from the MAPLE PM2.5 model on average, but in individual cohorts, substantial differences were found. CONCLUSIONS: Long-term exposure to PM2.5, NO2, and BC was positively associated with natural-cause and cause-specific mortality in the pooled cohort and the administrative cohorts. Associations were found well below current limit values and guidelines for PM2.5 and NO2. Associations tended to be supralinear, with steeper slopes at low exposures with no indication of a threshold. Two-pollutant models documented the importance of characterizing the ambient mixture with both NO2 and PM2.5. We mostly found negative associations with O3. In two-pollutant models with NO2, the negative associations with O3 were attenuated to essentially unity in the mortality analysis of the administrative cohorts and the incidence analyses in the pooled cohort. In the mortality analysis of the pooled cohort, significant negative associations with O3 remained in two-pollutant models. Long-term exposure to PM2.5, NO2, and BC was also positively associated with morbidity outcomes in the pooled cohort. For stroke, asthma, and COPD, positive associations were found for PM2.5, NO2, and BC. For acute coronary heart disease, an increased HR was observed for NO2. For lung cancer, an increased HR was found only for PM2.5. Associations mostly showed steeper slopes at low exposures with no indication of a threshold.


Asunto(s)
Contaminantes Atmosféricos , Asma , Enfermedad Coronaria , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Accidente Cerebrovascular , Adulto , Anciano , Contaminantes Atmosféricos/efectos adversos , Canadá , Cobre/análisis , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Incidencia , Dióxido de Nitrógeno/efectos adversos , Hollín/análisis , Azufre/análisis , Estados Unidos , Zinc/análisis
17.
Occup Environ Med ; 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323454

RESUMEN

OBJECTIVES: Evidence on the association between night work and Parkinson's disease (PD) is sparse and conflicting, calling for more definitive studies. METHODS: We included 20 138 female nurses from the Danish Nurse Cohort without PD who at baseline in 1993 and/or 1999 reported their most common current work schedule (day, evening, night, and rotating (a combination of at least two of these)), including information on lifetime cumulative duration (years) of each shift in a 2009 follow-up survey. We obtained information on PD hospital contacts and PD medication until November 2018 via linkage to the Danish National Patient (inpatient from 1977 and outpatient contacts from 1995 onwards) and Prescription Registers starting in 1995. We defined the incidence of PD as the first-ever hospital contact due to PD, or the first-ever redeemed levodopa prescription, whichever came first. We used Cox regression models to calculate HRs and 95% CIs, adjusting for age, smoking status, coffee consumption and use of hormone replacement therapy. RESULTS: We found no significant difference in PD risk among nurses who reported working evening (HR=0.86; 95% CI=0.55 to 1.34), night (HR=1.26; 95% CI=0.79 to 2.02) or rotating shifts (HR=0.83; 95% CI=0.56 to 1.21) at cohort baseline in 1993 or 1999, when compared with permanent day workers. Similarly, persistency of shift work (working the same work schedule for 6+ years) or duration of shift work was not associated with PD risk. CONCLUSIONS: Overall, there was little evidence for an association between various shift work schedules including night work and PD in this cohort of middle-aged female nurses.

18.
Alzheimers Dement ; 16(9): 1268-1279, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652788

RESUMEN

INTRODUCTION: A few studies suggest that working night and rotating shifts increase the risk of dementia. We examined the association between shift work and the incidence of dementia in a cohort of female Danish nurses. METHODS: We linked Danish Nurse Cohort participants, who reported work schedules (day, evening, night, rotating shifts) in 1993 and/or 1999 and their duration in 2009, to Danish registers to obtain information on dementia hospitalizations and prescription medication until November 2018. RESULTS: Among 6048 nurses who reported work schedules in 1993 and 1999, nurses working night shifts ≥6 years had higher dementia incidence (hazard ratio: 2.43, 95% confidence interval: 1.39 to 4.23) than those working day shifts ≥6 years. Among 8059 nurses who reported shift work duration, nurses working night shifts ≥6 years had higher dementia incidence than those working night shifts <1 year (1.47, 1.06 to 2.06). DISCUSSION: Persistent night shift work may increase the risk of dementia.


Asunto(s)
Demencia/epidemiología , Enfermeras y Enfermeros/estadística & datos numéricos , Horario de Trabajo por Turnos/estadística & datos numéricos , Anciano , Estudios de Cohortes , Demencia/etiología , Dinamarca/epidemiología , Femenino , Humanos , Incidencia , Factores de Riesgo
19.
Environ Res ; 172: 502-510, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30852453

RESUMEN

BACKGROUND: Studies have suggested that traffic noise is associated with markers of obesity. We investigated the association of exposure to road traffic noise with body mass index (BMI) and waist circumference in the Danish Nurse Cohort. METHODS: We used data on 15,501 female nurses (aged >44 years) from the nationwide Danish Nurse Cohort who, in 1999, reported information on self-measured height, weight, and waist circumference, together with information on socioeconomic status, lifestyle, work and health. Road traffic noise at the most exposed façade of the residence was estimated using Nord2000 as the annual mean of a weighted 24-h average (Lden). We used multiple linear regression models to examine associations of road traffic noise levels in 1999 (1-year mean) with BMI and waist circumference, adjusting for potential confounders, and evaluated effect modification by degree of urbanization, air pollution levels, night shift work, job strain, sedative use, sleep aid use, and family history of obesity. RESULTS: We did not observe associations between road traffic noise (per 10 dB increase in the 1-year mean Lden) and BMI (kg/m2) (ß: 0.00; 95% confidence interval (CI): -0.07, 0.07) or waist circumference (cm) (ß: -0.09; 95% CI: -0.31, 0.31) in the fully adjusted model. We found significant effect modification of job strain and degree of urbanization on the associations between Lden and both BMI and waist circumference. Job strained nurses were associated with a 0.41 BMI-point increase, (95% CI: 0.06, 0.76) and a 1.00 cm increase in waist circumference (95% CI: 0.00, 2.00). Nurses living in urban areas had a statistically significant positive association of Lden with BMI (ß: 0.26; 95% CI: 0.11, 0.42), whilst no association was found for nurses living in suburban and rural areas. CONCLUSION: Our results suggest that road traffic noise exposure in nurses with particular susceptibilities, such as those with job strain, or living in urban areas, may lead to increased BMI, a marker of adiposity.


Asunto(s)
Adiposidad , Índice de Masa Corporal , Ruido del Transporte , Circunferencia de la Cintura , Adulto , Estudios Transversales , Dinamarca , Exposición a Riesgos Ambientales , Femenino , Humanos , Obesidad/diagnóstico
20.
Breast Cancer Res ; 20(1): 119, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290832

RESUMEN

BACKGROUND: Exposure to road traffic noise was associated with increased risk of estrogen receptor (ER)-negative (ER-) breast cancer in a previous cohort study, but not with overall or ER-positive (ER+) breast cancer, or breast cancer prognosis. We examined the association between long-term exposure to road traffic noise and incidence of breast cancer, overall and by ER and progesterone receptor (PR) status. METHODS: We used the data from a nationwide Danish Nurse Cohort on 22,466 female nurses (age > 44 years) who at recruitment in 1993 or 1999 reported information on breast cancer risk factors. We obtained data on the incidence of breast cancer from the Danish Cancer Registry, and on breast cancer subtypes by ER and PR status from the Danish Breast Cancer Cooperative Group, up to 31 December 2012. Road traffic noise levels at the nurses' residences were estimated by the Nord2000 method between 1970 and 2013 as annual means of a weighted 24 h average (Lden) at the most exposed facade. We used time-varying Cox regression to analyze the associations between the 24-year, 10-year, and 1-year mean of Lden and breast cancer, separately for total breast cancer and by ER and PR status. RESULTS: Of the 22,466 women, 1193 developed breast cancer in total during 353,775 person-years of follow up, of whom 611 had complete information on ER and PR status. For each 10 dB increase in 24-year mean noise levels at their residence, we found a statistically significant 10% (hazard ratio and 95% confidence interval 1.10; 1.00-1.20) increase in total breast cancer incidence and a 17% (1.17; 1.02-1.33) increase in analyses based on 611 breast cancer cases with complete ER and PR information. We found positive, statistically significant association between noise levels and ER+ (1.23; 1.06-1.43, N = 494) but not ER- (0.93; 0.70-1.25, N = 117) breast cancers, and a stronger association between noise levels and PR+ (1.21; 1.02-1.42, N = 393) than between noise levels and PR- (1.10; 0.89-1.37, N = 218) breast cancers. Association between noise and ER+ breast cancer was statistically significantly stronger in nurses working night shifts (3.36; 1.48-7.63) than in those not working at night (1.21; 1.02-1.43) (p value for interaction = 0.05). CONCLUSION: Long-term exposure to road traffic noise may increase risk of ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama/etiología , Ruido del Transporte/efectos adversos , Enfermeras y Enfermeros/estadística & datos numéricos , Sistema de Registros/estadística & datos numéricos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/metabolismo , Estudios de Cohortes , Dinamarca/epidemiología , Femenino , Humanos , Incidencia , Persona de Mediana Edad , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA