Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 73(4): 973-980, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253242

RESUMEN

Objectives: To establish the role of specific, non-synonymous SNPs in the RNA polymerase ß subunit (rpoB) gene in reducing the susceptibility of Clostridium difficile to fidaxomicin and to explore the potential in vivo significance of rpoB mutant strains. Methods: Allelic exchange was used to introduce three different SNPs into the rpoB gene of an erythromycin-resistant derivative (CRG20291) of C. difficile R20291. The genome sequences of the created mutants were determined and each mutant analysed with respect to growth and sporulation rates, toxin A/B production and cytotoxicity against Vero cells, and in competition assays. Their comparative virulence and colonization ability was also assessed in a hamster infection model. Results: The MIC of fidaxomicin displayed by three mutants CRG20291-TA, CRG20291-TG and CRG20291-GT was substantially increased (>32, 8 and 2 mg/L, respectively) relative to that of the parent strain (0.25 mg/L). Genome sequencing established that the intended mutagenic substitutions in rpoB were the only changes present. Relative to CRG20291, all mutants had attenuated growth, were outcompeted by the parental strain, had lower sporulation and toxin A/B production capacities, and displayed diminished cytotoxicity. In a hamster model, virulence of all three mutants was significantly reduced compared with the progenitor strain, whereas the degree of caecum colonization was unaltered. Conclusions: Our study demonstrates that particular SNPs in rpoB lead to reduced fidaxomicin susceptibility. These mutations were associated with a fitness cost in vitro and reduced virulence in vivo.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/genética , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana , Fidaxomicina/farmacología , Aptitud Genética , Mutación Missense , Animales , Toxinas Bacterianas/metabolismo , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/patología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Femenino , Mesocricetus , Pruebas de Sensibilidad Microbiana , Esporas Bacterianas/crecimiento & desarrollo , Células Vero , Virulencia , Secuenciación Completa del Genoma
2.
PLoS Pathog ; 11(11): e1005273, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26565797

RESUMEN

Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.


Asunto(s)
División Celular/fisiología , Ciclinas/metabolismo , Malaria/parasitología , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Culicidae , Ciclinas/genética , Femenino , Humanos , Ratones , Oocistos , Proteínas Protozoarias/genética , Esporozoítos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA