Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 616(7958): 814-821, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046086

RESUMEN

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Asunto(s)
Envejecimiento , Longevidad , Elongación de la Transcripción Genética , Animales , Humanos , Ratones , Ratas , Envejecimiento/genética , Insulina/metabolismo , Longevidad/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , ARN Circular , Somatomedinas , Nucleosomas , Histonas , División Celular , Restricción Calórica
2.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31202576

RESUMEN

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , Inestabilidad Genómica/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Translocación Genética/genética , Factor de Unión a CCCTC/genética , Carcinogénesis/genética , Línea Celular Tumoral , Cromatina/química , Cromatina/genética , Cromosomas/química , Cromosomas/genética , ADN/genética , Roturas del ADN de Doble Cadena , Humanos , Leucemia/genética , Leucemia/patología
3.
Mol Cell ; 70(4): 730-744.e6, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29706538

RESUMEN

Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Genoma Humano , Proteína HMGB2/metabolismo , Factor de Unión a CCCTC/genética , Proliferación Celular , Senescencia Celular , Cromatina/genética , Proteína HMGB2/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos
4.
RNA ; 28(11): 1481-1495, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35973723

RESUMEN

Circular RNAs are an endogenous long-lived and abundant noncoding species. Despite their prevalence, only a few circRNAs have been dissected mechanistically to date. Here, we cataloged nascent RNA-enriched circRNAs from primary human cells and functionally assigned a role to circRAB3IP in sustaining cellular homeostasis. We combined "omics" and functional experiments to show how circRAB3IP depletion deregulates hundreds of genes, suppresses cell cycle progression, and induces senescence-associated gene expression changes. Conversely, excess circRAB3IP delivered to endothelial cells via extracellular vesicles suffices for accelerating their division. We attribute these effects to an interplay between circRAB3IP and the general splicing factor SF3B1, which can affect transcript variant expression levels of cell cycle-related genes. Together, our findings link the maintenance of cell homeostasis to the presence of a single circRNA.


Asunto(s)
MicroARNs , ARN Circular , Humanos , ARN Circular/genética , Células Endoteliales/metabolismo , Proliferación Celular/genética , ARN Mensajero/genética , Expresión Génica , MicroARNs/genética
5.
Genome Res ; 30(4): 515-527, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32253279

RESUMEN

Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Diploidia , Humanos , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Proteolisis , Relación Estructura-Actividad , Cohesinas
6.
Mol Syst Biol ; 17(6): e9760, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34166567

RESUMEN

Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASP-relevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cell-autonomous and paracrine senescence.


Asunto(s)
Proteína HMGB1 , ARN , Animales , Senescencia Celular/genética , Cromatina/genética , Proteína HMGB1/genética , Homeostasis/genética
7.
J Cell Sci ; 132(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31028178

RESUMEN

A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Proteína Tumoral p73/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Células Epiteliales/citología , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Activación Transcripcional/genética , Proteína Tumoral p73/genética
8.
J Neurosci Res ; 95(4): 1053-1066, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27714837

RESUMEN

It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1ß release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Adenosina Trifosfato/farmacología , Astrocitos/efectos de los fármacos , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Actinas/metabolismo , Animales , Animales Recién Nacidos , Anexina A5/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Proteína Ácida Fibrilar de la Glía/metabolismo , Interferón gamma/farmacología , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Malondialdehído/metabolismo , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Cicatrización de Heridas/efectos de los fármacos
9.
Aging Cell ; 23(4): e14083, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196311

RESUMEN

Cellular senescence is acknowledged as a key contributor to organismal ageing and late-life disease. Though popular, the study of senescence in vitro can be complicated by the prolonged and asynchronous timing of cells committing to it and by its paracrine effects. To address these issues, we repurposed a small molecule inhibitor, inflachromene (ICM), to induce senescence to human primary cells. Within 6 days of treatment with ICM, senescence hallmarks, including the nuclear eviction of HMGB1 and -B2, are uniformly induced across IMR90 cell populations. By generating and comparing various high throughput datasets from ICM-induced and replicative senescence, we uncovered a high similarity of the two states. Notably though, ICM suppresses the pro-inflammatory secretome associated with senescence, thus alleviating most paracrine effects. In summary, ICM rapidly and synchronously induces a senescent-like phenotype thereby allowing the study of its core regulatory program without confounding heterogeneity.


Asunto(s)
Envejecimiento , Senescencia Celular , Humanos , Envejecimiento/genética , Senescencia Celular/genética
10.
Nat Protoc ; 18(6): 1893-1929, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198320

RESUMEN

Induced pluripotent stem cell-derived brain organoids enable the developmental complexities of the human brain to be deconstructed. During embryogenesis, optic vesicles (OVs), the eye primordium attached to the forebrain, develop from diencephalon. However, most 3D culturing methods generate either brain or retinal organoids individually. Here we describe a protocol to generate organoids with both forebrain entities, which we call OV-containing brain organoids (OVB organoids). In this protocol, we first induce neural differentiation (days 0-5) and collect neurospheres, which we culture in a neurosphere medium to initiate their patterning and further self-assembly (days 5-10). Then, upon transfer to spinner flasks containing OVB medium (days 10-30), neurospheres develop into forebrain organoids with one or two pigmented dots restricted to one pole, displaying forebrain entities of ventral and dorsal cortical progenitors and preoptic areas. Further long-term culture results in photosensitive OVB organoids constituting complementary cell types of OVs, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections and electrically active neuronal networks. OVB organoids provide a system to help dissect interorgan interactions between the OVs as sensory organs and the brain as a processing unit, and can help model early eye patterning defects, including congenital retinal dystrophy. To conduct the protocol, experience in sterile cell culture and maintenance of human induced pluripotent stem cells is essential; theoretical knowledge of brain development is advantageous. Furthermore, specialized expertise in 3D organoid culture and imaging for the analysis is needed.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/fisiología , Prosencéfalo , Organoides , Desarrollo Embrionario
11.
J Extracell Vesicles ; 10(4): e12041, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33659050

RESUMEN

A hallmark of senescence is the acquisition of an enhanced secretome comprising inflammatory mediators and tissue remodelling agents - the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells are hypothesised to contribute to both ageing and pathologies associated with age. Whilst soluble factors have been the most widely investigated components of the SASP, there is growing evidence that small extracellular vesicles (EVs) comprise functionally important constituents. Thus, dissecting the contribution of the soluble SASP from the vesicular component is crucial to elucidating the functional significance of senescent cell derived EVs. Here, we take advantage of a systematic proteomics based approach to determine that soluble SASP factors co-isolate with EVs following differential ultracentrifugation (dUC). We present size-exclusion chromatography (SEC) as a method for separation of the soluble and vesicular components of the senescent secretome and thus EV purification. Furthermore, we demonstrate that SEC EVs isolated from senescent cells contribute to non-cell autonomous paracrine senescence. Therefore, this work emphasises the requirement for methodological rigor due to the propensity of SASP components to co-isolate during dUC and provides a framework for future investigations of the vesicular component of the SASP.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Vesículas Extracelulares/metabolismo , Secretoma/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Línea Celular Tumoral , Células Cultivadas , Cromatografía en Gel , Exosomas/química , Exosomas/metabolismo , Vesículas Extracelulares/química , Humanos , Fenotipo , Proteínas/análisis , Proteómica/métodos
12.
Cell Rep ; 36(10): 109656, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496239

RESUMEN

Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of GSCs' fundamental biology is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit elevated levels of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components is sufficient to induce ciliogenesis in a subset of GSCs via relocating platelet-derived growth factor receptor-alpha (PDGFR-α) to a newly induced cilium. Importantly, restoring ciliogenesis enabled GSCs to switch from self-renewal to differentiation. Finally, using an organoid-based glioma invasion assay and brain xenografts in mice, we establish that ciliogenesis-induced differentiation can prevent the infiltration of GSCs into the brain. Our findings illustrate a role for cilium as a molecular switch in determining GSCs' fate and suggest cilium induction as an attractive strategy to intervene in GSCs proliferation.


Asunto(s)
Neoplasias Encefálicas/patología , Diferenciación Celular/fisiología , Glioma/patología , Recurrencia Local de Neoplasia/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Autorrenovación de las Células/fisiología , Glioblastoma/patología , Humanos , Ratones , Células Madre Neoplásicas/metabolismo
13.
Sci Adv ; 7(43): eabg8205, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34678064

RESUMEN

Mammalian chromosomes are three-dimensional entities shaped by converging and opposing forces. Mitotic cell division induces marked chromosome condensation, but following reentry into the G1 phase of the cell cycle, chromosomes reestablish their interphase organization. Here, we tested the role of RNA polymerase II (RNAPII) in this transition using a cell line that allows its auxin-mediated degradation. In situ Hi-C showed that RNAPII is required for both compartment and loop establishment following mitosis. RNAPs often counteract loop extrusion, and in their absence, longer and more prominent loops arose. Evidence from chromatin binding, super-resolution imaging, and in silico modeling allude to these effects being a result of RNAPII-mediated cohesin loading upon G1 reentry. Our findings reconcile the role of RNAPII in gene expression with that in chromatin architecture.

14.
Cell Stem Cell ; 28(10): 1740-1757.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34407456

RESUMEN

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Desarrollo Embrionario , Humanos , Organogénesis , Prosencéfalo
15.
Nat Commun ; 12(1): 3014, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021162

RESUMEN

Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.


Asunto(s)
Autofagia/fisiología , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Autofagia/genética , Cromatina , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Epigenómica , Edición Génica , Expresión Génica , Síndrome de Hallermann/genética , Humanos , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA