Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
New Phytol ; 229(4): 2050-2061, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33078389

RESUMEN

In Arabidopsis thaliana, phytochrome B (phyB) is the dominant receptor of photomorphogenic development under red light. Phytochrome B interacts with a set of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR 3 (PIF3). The interaction between PIF3 and photoactivated phyB leads to the rapid phosphorylation and degradation of PIF3 and also to the degradation of phyB, events which are required for proper photomorphogenesis. Here we report that PIF3 is SUMOylated at the Lys13 (K13) residue and that we could detect this posttranslational modification in a heterologous experimental system and also in planta. We also found that the SUMO acceptor site mutant PIF3(K13R) binds more strongly to the target promoters than its SUMOylated, wild-type counterpart. Seedlings expressing PIF3(K13R) show an elongated hypocotyl response, elevated photoprotection and higher transcriptional induction of red-light responsive genes compared with plantlets expressing wild-type PIF3. These observations are supported by the lower level of phyB in plants which possess only PIF3(K13R), indicating that SUMOylation of PIF3 also alters photomorphogenesis via the regulation of phyB levels. In conclusion, whereas SUMOylation is generally connected to different stress responses, it also fine-tunes light signalling by reducing the biological activity of PIF3, thus promoting photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fitocromo B , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Sumoilación
2.
Proc Natl Acad Sci U S A ; 112(35): 11108-13, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283376

RESUMEN

The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyB(Lys996Arg)-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.


Asunto(s)
Arabidopsis/metabolismo , Luz , Fitocromo B/metabolismo , Transducción de Señal , Sumoilación , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fitocromo B/química , Fitocromo B/genética , Homología de Secuencia de Aminoácido
3.
Proc Natl Acad Sci U S A ; 110(26): 10866-71, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754415

RESUMEN

Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic "dormancy-repressing" and "dormancy-promoting" routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Latencia en las Plantas/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Germinación/fisiología , Mutación , Latencia en las Plantas/genética , Especificidad de la Especie
4.
Plant Cell ; 23(4): 1337-51, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21478445

RESUMEN

The period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy. In this article, we establish that unlike PIFs, which mainly promote hypocotyl elongation, SPT is a potent regulator of cotyledon expansion. Here, SPT acts in an analogous manner to the gibberellin-dependent DELLAs, REPRESSOR OF GA1-3 and GIBBERELLIC ACID INSENSITIVE, which restrain cotyledon expansion alongside SPT. However, although DELLAs are not required for SPT action, we demonstrate that SPT is subject to negative regulation by DELLAs. Cross-regulation of SPT by DELLAs ensures that SPT protein levels are limited when DELLAs are abundant but rise following DELLA depletion. This regulation provides a means to prevent excessive growth suppression that would result from the dual activity of SPT and DELLAs, yet maintain growth restraint under DELLA-depleted conditions. We present evidence that SPT and DELLAs regulate common gene targets and illustrate that the balance of SPT and DELLA action depends on light quality signals in the natural environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Represoras/metabolismo , Plantones/crecimiento & desarrollo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cotiledón/efectos de los fármacos , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Giberelinas/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Fitocromo B/metabolismo , Proteínas Represoras/genética , Plantones/efectos de los fármacos , Plantones/genética , Plantones/efectos de la radiación
5.
Plant J ; 65(3): 441-52, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21265897

RESUMEN

The ability to withstand environmental temperature variation is essential for plant survival. Former studies in Arabidopsis revealed that light signalling pathways had a potentially unique role in shielding plant growth and development from seasonal and daily fluctuations in temperature. In this paper we describe the molecular circuitry through which the light receptors cry1 and phyB buffer the impact of warm ambient temperatures. We show that the light signalling component HFR1 acts to minimise the potentially devastating effects of elevated temperature on plant physiology. Light is known to stabilise levels of HFR1 protein by suppressing proteasome-mediated destruction of HFR1. We demonstrate that light-dependent accumulation and activity of HFR1 are highly temperature dependent. The increased potency of HFR1 at warmer temperatures provides an important restraint on PIF4 that drives elongation growth. We show that warm ambient temperatures promote the accumulation of phosphorylated PIF4. However, repression of PIF4 activity by phyB and cry1 (via HFR1) is critical for controlling growth and maintaining physiology as temperatures rise. Loss of this light-mediated restraint has severe consequences for adult plants which have greatly reduced biomass.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Criptocromos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomasa , Criptocromos/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Proteínas Nucleares/genética , Fenotipo , Fosforilación , Fitocromo B/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/efectos de la radiación , Temperatura
6.
Plant Mol Biol ; 73(1-2): 89-95, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19911288

RESUMEN

Phytochrome interacting factor (PIF) transcription factors have been shown to be important in the regulation of seed dormancy and germination by environmental cues. Many PIF-family transcription factors are expressed in seeds but only PIF1 and SPATULA (SPT) have been tested for a role in germination control. Here we show that PIF6 is expressed strongly during seed development, and that two splice variants exist, one full length (the alpha form), and a second, the beta form, in which a cryptic intron containing the potential DNA binding domain is spliced out, predicted to lead to the generation of a premature stop codon. Loss of PIF6 increases primary seed dormancy, whereas overexpression of the beta form, but not the alpha form, reduce dormancy. Our data show the potential for natural splice variants of PIF transcription factors to be important in the evolution of the control of environmental signalling in plants.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Semillas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Codón sin Sentido , Regulación de la Expresión Génica de las Plantas , Germinación , Intrones , Luz , Semillas/genética
7.
Curr Biol ; 15(22): 1998-2006, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16303558

RESUMEN

BACKGROUND: Plants integrate signals from the environment and use these to modify the timing of development according to seasonal cues. Seed germination is a key example of this phenomenon and in Arabidopsis is promoted by the synergistic interaction of light and low temperatures in dormant seeds. This signaling pathway is known to converge on the regulation of the gibberellin (GA) biosynthetic genes GA3 oxidase (GA3ox), whose expression is transcriptionally induced by light and cold in imbibed seeds. However, the molecular basis of this response has until now been unknown. RESULTS: Here we show that the bHLH transcription factor SPATULA is a light-stable repressor of seed germination and mediates the germination response to temperature. Furthermore, SPT is required in dormant seeds for maintaining the repression of GA3ox transcription. We also show that the related protein PIL5 represses seed germination and GA3ox expression in the dark. CONCLUSIONS: We conclude that SPT and PIL5 form part of a regulatory network coupling seed germination and GA3ox expression to light and temperature signaling in the seed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Luz , Semillas/crecimiento & desarrollo , Transducción de Señal/fisiología , Arabidopsis , Western Blotting , Cartilla de ADN , Vectores Genéticos , Oxigenasas de Función Mixta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizobium , Semillas/metabolismo
8.
Plant Cell Environ ; 31(5): 667-78, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18266901

RESUMEN

Since the discovery of the physical interaction between phytochrome B and the basic helix-loop-helix (bHLH) transcription factor (TF) PIF3 a decade ago, plant phytochrome-signalling research has largely focused on understanding the mechanisms through which phytochromes and members of this bHLH family signal. This concerted effort has revealed how phytochrome and bHLH TF control gene expression and plant growth, and has assigned precise roles to a number of genes in the PIF3-like bHLH TF clade. This work has focused largely on cell autonomous signalling events; however, to synchronize plant growth and developmental events at the tissue and organ level, temporal and spatial signal integration is crucial. This review brings together current knowledge of phytochrome signalling through phytochrome-interacting factors (PIFs)/phytochrome-interacting factor-like (PILs), and it evaluates the current evidence for cross-tissue signal integration.


Asunto(s)
Fitocromo/metabolismo , Plantas/metabolismo , Transducción de Señal , Fotosíntesis
9.
Plant Signal Behav ; 6(4): 471-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21364315

RESUMEN

Accurate development of the gynoecium, the female reproductive organ, is necessary to achieve efficient fertilization. In Arabidopsis, the correct patterning of the apical-basal axis of the gynoecium requires the establishment of a morphogenic gradient of auxin. This allows the production of specialized tissues, whose roles consist of attracting pollen, allowing pollen tube growth and protecting the ovules within the ovaries. Mutations in the bHLH transcription factor SPATULA (SPT) are known to impair the development of the apical tissues of the gynoecium. Here, we show that the spt phenotype is rescued by the removal of phytochrome B, and discuss how light signaling may control flower development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fitocromo B/genética , Plantas Modificadas Genéticamente/genética
10.
Curr Biol ; 20(16): 1493-7, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20705468

RESUMEN

Plants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions. We show that only daytime temperatures affect vegetative growth and that SPT couples morning temperature to growth rate. In seedlings, warm temperatures inhibit the accumulation of the SPT protein, and SPT autoregulates its own transcript abundance in conjunction with diurnal effects. Genetic data show that repression of growth by SPT is independent of GA signaling and phytochrome B, as previously shown for PIF4. Our data suggest that SPT integrates time of day and temperature signaling to control vegetative growth rate.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Temperatura , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Giberelinas/farmacología , Luz , ARN Mensajero/metabolismo , Transducción de Señal/efectos de la radiación
11.
Cold Spring Harb Perspect Biol ; 1(6): a001586, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20457562

RESUMEN

Light is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality. Environmental light signals can drive developmental transitions such as germination and flowering, but they also continuously shape development to allow adaptation to the local habitat and microclimate. The ability to respond to a changing and sometimes unfavorable environment underlies the huge success of plants. Much of this growth and developmental plasticity is achieved by light modulation of auxin signaling systems. In this article, we examine the connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Luz , Desarrollo de la Planta , Plantas/metabolismo , Transducción de Señal/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fitocromo/genética , Fitocromo/metabolismo , Transducción de Señal/genética
13.
J Biol Chem ; 277(35): 31623-30, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12050159

RESUMEN

Chlororespiration has been defined as a respiratory electron transport chain in interaction with photosynthetic electron transport involving both non-photochemical reduction and oxidation of plastoquinones. Different enzymatic activities, including a plastid-encoded NADH dehydrogenase complex, have been reported to be involved in the non-photochemical reduction of plastoquinones. However, the enzyme responsible for plasquinol oxidation has not yet been clearly identified. In order to determine whether the newly discovered plastid oxidase (PTOX) involved in carotenoid biosynthesis acts as a plastoquinol oxidase in higher plant chloroplasts, the Arabidopsis thaliana PTOX gene (At-PTOX) was expressed in tobacco under the control of a strong constitutive promoter. We showed that At-PTOX is functional in tobacco chloroplasts and strongly accelerates the non-photochemical reoxidation of plastoquinols; this effect was inhibited by propyl gallate, a known inhibitor of PTOX. During the dark to light induction phase of photosynthesis at low irradiances, At-PTOX drives significant electron flow to O(2), thus avoiding over-reduction of plastoquinones, when photo- synthetic CO(2) assimilation was not fully induced. We proposed that PTOX, by modulating the redox state of intersystem electron carriers, may participate in the regulation of cyclic electron flow around photosystem I.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Nicotiana/enzimología , Oxidorreductasas/metabolismo , Plastidios/enzimología , Plastoquinona/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cartilla de ADN , Cinética , Luz , NAD/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa , Espectrometría de Fluorescencia , Transcripción Genética
14.
Eur J Biochem ; 270(18): 3787-94, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12950262

RESUMEN

The plastid terminal oxidase (PTOX) encoded by the Arabidopsis IMMUTANS gene was expressed in Escherichia coli cells and its quinone/oxygen oxidoreductase activity monitored in isolated bacterial membranes using NADH as an electron donor. Specificity for plastoquinone was observed. Neither ubiquinone, duroquinone, phylloquinone nor benzoquinone could substitute for plastoquinone in this assay. However, duroquinol (fully reduced chemically) was an accepted substrate. Iron is also required and cannot be substituted by Cu(2+), Zn(2+) or Mn(2+). This plastoquinol oxidase activity is independent of temperature over the 15-40 degrees C range but increases with pH (from 5.5 to 9.0). Unlike higher plant mitochondrial alternative oxidases, to which PTOX shows sequence similarity (but also differences, especially in a putative quinone binding site and in cysteine conservation), PTOX activity does not appear to be regulated by pyruvate or any other tested sugar, nor by AMP. Its activity decreases, however, with increasing salt (NaCl or KCl) concentration. Various quinone analogues were tested for their inhibitory activity on PTOX. Pyrogallol analogues were found to be inhibitors, especially octyl gallate (I50 = 0.4 microM ) that appears far more potent than propyl gallate or gallic acid. Thus, octyl gallate is a useful inhibitor for future in vivo or in organello studies aimed at studying the roles of PTOX in chlororespiration and as a cofactor for carotenoid biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Ácido Gálico/análogos & derivados , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Sitios de Unión , Membrana Celular/metabolismo , Ácido Cítrico/farmacología , Secuencia de Consenso , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Ácido Gálico/farmacología , Concentración de Iones de Hidrógeno , Hierro/farmacología , Malatos/farmacología , Datos de Secuencia Molecular , Oxidorreductasas/genética , Consumo de Oxígeno/fisiología , Quinonas/química , Quinonas/metabolismo , Quinonas/farmacología , Cloruro de Sodio/farmacología , Especificidad por Sustrato , Temperatura
15.
Plant J ; 35(6): 704-16, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12969424

RESUMEN

We have constructed a tobacco psbA gene deletion mutant that is devoid of photosystem II (PSII) complex. Analysis of thylakoid membranes revealed comparable amounts, on a chlorophyll basis, of photosystem I (PSI), the cytochrome b6f complex and the PSII light-harvesting complex (LHCII) antenna proteins in wild-type (WT) and DeltapsbA leaves. Lack of PSII in the mutant, however, resulted in over 10-fold higher relative amounts of the thylakoid-associated plastid terminal oxidase (PTOX) and the NAD(P)H dehydrogenase (NDH) complex. Increased amounts of Ndh polypeptides were accompanied with a more than fourfold enhancement of NDH activity in the mutant thylakoids, as revealed by in-gel NADH dehydrogenase measurements. NADH also had a specific stimulating effect on P700+ re-reduction in the DeltapsbA thylakoids. Altogether, our results suggest that enhancement of electron flow via the NDH complex and possibly other alternative electron transport routes partly compensates for the loss of PSII function in the DeltapsbA mutant. As mRNA levels were comparable in WT and DeltapsbA plants, upregulation of the alternative electron transport pathways (NDH complex and PTOX) occurs apparently by translational or post-translational mechanisms.


Asunto(s)
FMN Reductasa/genética , Eliminación de Gen , Nicotiana/genética , Oxidorreductasas/genética , Plastidios/genética , Complejos Multienzimáticos/genética , Mutagénesis , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Plastidios/enzimología , Plastidios/ultraestructura , Mapeo Restrictivo , Tilacoides/enzimología , Tilacoides/genética , Nicotiana/enzimología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA