Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 143(11): 2012-24, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122167

RESUMEN

Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly.


Asunto(s)
Movimiento Celular , Organogénesis , Papilas Gustativas/citología , Papilas Gustativas/crecimiento & desarrollo , Pez Cebra/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Elementos de Facilitación Genéticos/genética , Larva/citología , Larva/metabolismo , Serotonina/metabolismo , Factores de Transcripción , Proteínas de Pez Cebra/metabolismo
2.
Nature ; 562(7727): 350-351, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333590
3.
PLoS Comput Biol ; 13(6): e1005526, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28591182

RESUMEN

The development of new imaging and optogenetics techniques to study the dynamics of large neuronal circuits is generating datasets of unprecedented volume and complexity, demanding the development of appropriate analysis tools. We present a comprehensive computational workflow for the analysis of neuronal population calcium dynamics. The toolbox includes newly developed algorithms and interactive tools for image pre-processing and segmentation, estimation of significant single-neuron single-trial signals, mapping event-related neuronal responses, detection of activity-correlated neuronal clusters, exploration of population dynamics, and analysis of clusters' features against surrogate control datasets. The modules are integrated in a modular and versatile processing pipeline, adaptable to different needs. The clustering module is capable of detecting flexible, dynamically activated neuronal assemblies, consistent with the distributed population coding of the brain. We demonstrate the suitability of the toolbox for a variety of calcium imaging datasets. The toolbox open-source code, a step-by-step tutorial and a case study dataset are available at https://github.com/zebrain-lab/Toolbox-Romano-et-al.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Neuronas/fisiología , Programas Informáticos , Imagen de Colorante Sensible al Voltaje/métodos , Calcio/metabolismo , Rastreo Celular/métodos , Conectoma/métodos , Imagen Molecular/métodos , Neuronas/citología , Lenguajes de Programación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Integración de Sistemas
4.
Curr Biol ; 29(23): 4010-4023.e4, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31708392

RESUMEN

Organisms use their sensory systems to acquire information from their environment and integrate this information to produce relevant behaviors. Nevertheless, how sensory information is converted into adequate motor patterns in the brain remains an open question. Here, we addressed this question using two-photon and light-sheet calcium imaging in intact, behaving zebrafish larvae. We monitored neural activity elicited by auditory stimuli while simultaneously recording tail movements. We observed a spatial organization of neural activity according to four different response profiles (frequency tuning curves), suggesting a low-dimensional representation of frequency information, maintained throughout the development of the larvae. Low frequencies (150-450 Hz) were locally processed in the hindbrain and elicited motor behaviors. In contrast, higher frequencies (900-1,000 Hz) rarely induced motor behaviors and were also represented in the midbrain. Finally, we found that the sensorimotor transformations in the zebrafish auditory system are a continuous and gradual process that involves the temporal integration of the sensory response in order to generate a motor behavior.


Asunto(s)
Vías Auditivas/fisiología , Percepción Auditiva , Encéfalo/fisiología , Pez Cebra/fisiología , Animales , Vías Auditivas/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo
5.
Neuron ; 100(6): 1446-1459.e6, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30449656

RESUMEN

Previous studies suggest that the brain operates at a critical point in which phases of order and disorder coexist, producing emergent patterned dynamics at all scales and optimizing several brain functions. Here, we combined light-sheet microscopy with GCaMP zebrafish larvae to study whole-brain dynamics in vivo at near single-cell resolution. We show that spontaneous activity propagates in the brain's three-dimensional space, generating scale-invariant neuronal avalanches with time courses and recurrence times that exhibit statistical self-similarity at different magnitude, temporal, and frequency scales. This suggests that the nervous system operates close to a non-equilibrium phase transition, where a large repertoire of spatial, temporal, and interactive modes can be supported. Finally, we show that gap junctions contribute to the maintenance of criticality and that, during interactions with the environment (sensory inputs and self-generated behaviors), the system is transiently displaced to a more ordered regime, conceivably to limit the potential sensory representations and motor outcomes.


Asunto(s)
Encéfalo/citología , Modelos Neurológicos , Neuronas/fisiología , Ruido , Dinámicas no Lineales , Animales , Uniones Comunicantes/fisiología , Larva , Vías Nerviosas/fisiología , Probabilidad , Pez Cebra
6.
Curr Biol ; 27(12): 1707-1720.e5, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28578928

RESUMEN

From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit.


Asunto(s)
Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Percepción Visual/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/fisiología
7.
Sci Rep ; 6: 34015, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27659496

RESUMEN

Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming.

8.
Cell Rep ; 17(4): 1098-1112, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760314

RESUMEN

Following moving visual stimuli (conditioning stimuli, CS), many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE). Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion.


Asunto(s)
Encéfalo/fisiología , Percepción de Movimiento/fisiología , Percepción Visual/fisiología , Pez Cebra/fisiología , Animales , Condicionamiento Psicológico , Movimientos Oculares/fisiología , Efecto Tardío Figurativo/fisiología , Habituación Psicofisiológica , Larva/fisiología , Modelos Biológicos , Modelos Neurológicos , Movimiento , Neuronas/fisiología , Optogenética , Colículos Superiores/fisiología , Cola (estructura animal)
9.
Sci Rep ; 5: 12196, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26194888

RESUMEN

Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.


Asunto(s)
Dispositivos Laboratorio en un Chip , Actividad Motora/fisiología , Neuronas/fisiología , Pez Cebra/fisiología , Animales , Conducta Animal , Bulbo Olfatorio/fisiología , Reología , Olfato/fisiología , Gusto/fisiología
10.
Neuron ; 85(5): 1070-85, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25704948

RESUMEN

Spontaneous neuronal activity is spatiotemporally structured, influencing brain computations. Nevertheless, the neuronal interactions underlying these spontaneous activity patterns, and their biological relevance, remain elusive. Here, we addressed these questions using two-photon calcium imaging of intact zebrafish larvae to monitor the neuron-to-neuron spontaneous activity fine structure in the tectum, a region involved in visual spatial detection. Spontaneous activity was organized in topographically compact assemblies, grouping functionally similar neurons rather than merely neighboring ones, reflecting the tectal retinotopic map despite being independent of retinal drive. Assemblies represent all-or-none-like sub-networks shaped by competitive dynamics, mechanisms advantageous for visual detection in noisy natural environments. Notably, assemblies were tuned to the same angular sizes and spatial positions as prey-detection performance in behavioral assays, and their spontaneous activation predicted directional tail movements. Therefore, structured spontaneous activity represents "preferred" network states, tuned to behaviorally relevant features, emerging from the circuit's intrinsic non-linear dynamics, adapted for its functional role.


Asunto(s)
Adaptación Fisiológica/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Vías Visuales/fisiología , Animales , Animales Modificados Genéticamente , Colículos Superiores/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA