Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2317230121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768344

RESUMEN

Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Proteína gp41 de Envoltorio del VIH , VIH-1 , Proteína gp41 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/química , VIH-1/inmunología , Animales , Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Humanos , Ratones , Epítopos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Péptidos/inmunología , Péptidos/química , Femenino , Anticuerpos Monoclonales/inmunología
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431684

RESUMEN

The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1-infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated >5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1-infected individuals and are the target of current antibody-based vaccine efforts). Further, antisera from guinea pigs immunized with the NHR-based vaccine candidate (ccIZN36)3 neutralized tier-2 viruses from multiple clades in an FcγRI-dependent manner. As FcγRI is expressed on macrophages and dendritic cells, which are present at mucosal surfaces and are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important in the development of a prophylactic HIV-1 vaccine.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Receptores de IgG/inmunología , Secuencias Repetitivas de Aminoácido/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Afinidad de Anticuerpos , Cobayas , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/farmacología , Proteína gp41 de Envoltorio del VIH/genética , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Seropositividad para VIH/inmunología , VIH-1/efectos de los fármacos , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Sueros Inmunes/inmunología , Sueros Inmunes/farmacología , Inmunización , Inmunoglobulina G/inmunología , Secuencias Repetitivas de Aminoácido/inmunología , Internalización del Virus/efectos de los fármacos
3.
J Biol Chem ; 292(1): 278-291, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27879316

RESUMEN

A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Diseño de Fármacos , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/inmunología , VIH-1/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Cristalografía por Rayos X , Epítopos/inmunología , Cobayas , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/virología , Humanos , Unión Proteica , Conformación Proteica , Multimerización de Proteína
4.
Open Forum Infect Dis ; 11(5): ofae220, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770212

RESUMEN

Global use of pneumococcal conjugate vaccines (PCVs) with increasingly broader serotype coverage has helped to reduce the burden of pneumococcal disease in children and adults. In clinical studies comparing PCVs, higher-valency PCVs have met noninferiority criteria (based on immunoglobulin G geometric mean concentrations and response rates) for most shared serotypes. A numeric trend of declining immunogenicity against shared serotypes with higher-valency PCVs has also been observed; however, the clinical relevance is uncertain, warranting additional research to evaluate the effectiveness of new vaccines. Novel conjugation processes, carriers, adjuvants, and vaccine platforms are approaches that could help maintain or improve immunogenicity and subsequent vaccine effectiveness while achieving broader protection with increasing valency in pneumococcal vaccines.

5.
Proc Natl Acad Sci U S A ; 107(31): 13701-6, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20615991

RESUMEN

Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2. The resulting construct (HA6) was expressed in Escherichia coli and refolded from inclusion bodies. Biophysical studies and mutational analysis of the protein indicate that it is folded into the desired neutral pH conformation competent to bind the broadly neutralizing HA2 directed monoclonal 12D1, not the low pH conformation observed in previous studies. HA6 was highly immunogenic in mice and the mice were protected against lethal challenge by the homologous A/HK/68 mouse-adapted virus. An HA6-like construct from another H3 strain (A/Phil/2/82) also protected mice against A/HK/68 challenge. Regions included in HA6 are highly conserved within a subtype and are fairly well conserved within a clade. Targeting the highly conserved HA2 subunit with a bacterially produced immunogen is a vaccine strategy that may aid in pandemic preparedness.


Asunto(s)
Escherichia coli/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Dicroismo Circular , Escherichia coli/genética , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Mutación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
6.
Proc Natl Acad Sci U S A ; 107(23): 10655-60, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20483992

RESUMEN

Eliciting a broadly neutralizing polyclonal antibody response against HIV-1 remains a major challenge. One approach to vaccine development is prevention of HIV-1 entry into cells by blocking the fusion of viral and cell membranes. More specifically, our goal is to elicit neutralizing antibodies that target a transient viral entry intermediate (the prehairpin intermediate) formed by the HIV-1 gp41 protein. Because this intermediate is transient, a stable mimetic is required to elicit an immune response. Previously, a series of engineered peptides was used to select a mAb (denoted D5) that binds to the surface of the gp41 prehairpin intermediate, as demonstrated by x-ray crystallographic studies. D5 inhibits the replication of HIV-1 clinical isolates, providing proof-of-principle for this vaccine approach. Here, we describe a series of peptide mimetics of the gp41 prehairpin intermediate designed to permit a systematic analysis of the immune response generated in animals. To improve the chances of detecting weak neutralizing polyclonal responses, two strategies were employed in the initial screening: use of a neutralization-hypersensitive virus and concentration of the IgG fraction from immunized animal sera. This allowed incremental improvements through iterative cycles of design, which led to vaccine candidates capable of generating a polyclonal antibody response, detectable in unfractionated sera, that neutralize tier 1 HIV-1 and simian HIV primary isolates in vitro. Our findings serve as a starting point for the design of more potent immunogens to elicit a broadly neutralizing response against the gp41 prehairpin intermediate.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Materiales Biomiméticos , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Sueros Inmunes/inmunología , Vacunación , Secuencia de Aminoácidos , Animales , Cobayas , Proteína gp41 de Envoltorio del VIH/química , VIH-1/química , VIH-1/aislamiento & purificación , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Conejos
7.
Vaccine ; 41(4): 903-913, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36566163

RESUMEN

Despite the widespread effectiveness of pneumococcal conjugate vaccines on the overall incidence of invasive pneumococcal disease, the global epidemiological landscape continues to be transformed by residual disease from non-vaccine serotypes, thus highlighting the need for vaccines with expanded disease coverage. To address these needs, we have developed V116,an investigational 21-valent non-adjuvanted pneumococcal conjugate vaccine (PCV),containingpneumococcal polysaccharides (PnPs) 3, 6A, 7F, 8, 9N, 10A, 11A,12F, 15A, 16F, 17F, 19A, 20, 22F, 23A, 23B, 24F, 31, 33F, 35B, anda de-O-acetylated 15B(deOAc15B) individually conjugated to the nontoxic diphtheria toxoid CRM197 carrier protein. Preclinical studies evaluated the immunogenicity of V116 inadult monkeys, rabbits, and mice. Following one dose, V116 was found to be immunogenic in preclinical animal species and induced functional antibodies for all serotypes included in the vaccine, in addition to cross-reactive functional antibodies to serotypes 6C and 15B. In these preclinical animal studies, the increased valency of V116 did not result in serotype-specific antibody suppression when compared to lower valent vaccines V114 or PCV13. In addition, when compared with naïve controls, splenocytes from V116 to immunized animals demonstrated significant induction of CRM197-specific T cells in both IFN-γ and IL-4 ELISPOT assays, as well as Th1 and Th2 cytokine induction through in vitro stimulation assays, thus suggesting the ability of V116 to engage T cell dependent immune response pathways to aid in development of memory B cells. V116 also demonstrated significant protection in mice from intratracheal challenge with serotype 24F, a novel serotype not contained in any currently licensed vaccine.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Conejos , Ratones , Animales , Vacunas Neumococicas , Vacunas Conjugadas , Macaca mulatta , Anticuerpos Antibacterianos , Infecciones Neumocócicas/prevención & control , Serogrupo , Modelos Animales de Enfermedad
8.
J Biol Chem ; 285(52): 40604-11, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20943652

RESUMEN

We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Peptidomiméticos/inmunología , Vacunas contra el SIDA/farmacología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/prevención & control , Haptenos/inmunología , Haptenos/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Peptidomiméticos/farmacología
9.
Proc Natl Acad Sci U S A ; 105(41): 15684-9, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18838688

RESUMEN

The conserved oligomannose epitope, Man(9)GlcNAc(2), recognized by the broadly neutralizing human mAb 2G12 is an attractive prophylactic vaccine candidate for the prevention of HIV-1 infection. We recently reported total chemical synthesis of a series of glycopeptides incorporating one to three copies of Man(9)GlcNAc(2) coupled to a cyclic peptide scaffold. Surface plasmon resonance studies showed that divalent and trivalent, but not monovalent, compounds were capable of binding 2G12. To test the efficacy of the divalent glycopeptide as an immunogen capable of inducing a 2G12-like neutralizing antibody response, we covalently coupled the molecule to a powerful immune-stimulating protein carrier and evaluated immunogenicity of the conjugate in two animal species. We used a differential immunoassay to demonstrate induction of high levels of carbohydrate-specific antibodies; however, these antibodies showed poor recognition of recombinant gp160 and failed to neutralize a panel of viral isolates in entry-based neutralization assays. To ascertain whether antibodies produced during natural infection could recognize the mimetics, we screened a panel of HIV-1-positive and -negative sera for binding to gp120 and the synthetic antigens. We present evidence from both direct and competitive binding assays that no significant recognition of the glycopeptides was observed, although certain sera did contain antibodies that could compete with 2G12 for binding to recombinant gp120.


Asunto(s)
Anticuerpos/inmunología , Especificidad de Anticuerpos , Glicopéptidos/inmunología , VIH-1/inmunología , Oligosacáridos/inmunología , Animales , Unión Competitiva/inmunología , Glicopéptidos/síntesis química , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Imitación Molecular , Pruebas de Neutralización , Virión/inmunología
10.
Front Immunol ; 9: 2194, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319643

RESUMEN

The exploitation of various human immunodeficiency virus type-1 (HIV-1) vaccines has posed great challenges for the researchers in precisely evaluating the vaccine-induced immune responses, however, the understanding of vaccination response suffers from the lack of unbiased characterization of the immune landscape. The rapid development of high throughput sequencing (HTS) makes it possible to scrutinize the extremely complicated immunological responses during vaccination. In the current study, three vaccines, namely N36, N51, and 5-Helix based on the HIV-1 gp41 pre-hairpin fusion intermediate were applied in rhesus macaques. We assessed the longitudinal vaccine responses using HTS, which delineated the evolutionary features of both T cell and B cell receptor repertoires with extreme diversities. Upon vaccination, we unexpectedly found significant discrepancies in the landscapes of T-cell and B-cell repertoires, together with the detection of significant class switching and the lineage expansion of the B cell receptor or immunoglobulin heavy chain (IGH) repertoire. The vaccine-induced expansions of lineages were further evaluated for mutation rate, lineage abundance, and lineage size features in their IGH repertoires. Collectively, these findings conclude that the N51 vaccine displayed superior performance in inducing the class-switch of B cell isotypes and promoting mutations of IgM B cells. In addition, the systematic HTS analysis of the immune repertoires demonstrates its wide applicability in enhancing the understanding of immunologic changes during pathogen challenge, and will guide the development, evaluation, and exploitation of new generation of diagnostic markers, immunotherapies, and vaccine strategies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Linfocitos T/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Macaca mulatta , Masculino , Mutación , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Linfocitos T/metabolismo
12.
Protein Sci ; 27(11): 1923-1941, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30144190

RESUMEN

Chlamydial major outer membrane protein (MOMP) is the major protein constituent of the bacterial pathogen Chlamydia trachomatis. Chlamydia trachomatis Serovars D-K are the leading cause of genital tract infections which can lead to infertility or ectopic pregnancies. A vaccine against Chlamydia is highly desirable but currently not available. MOMP accounts for ~ 60% of the chlamydial protein mass and is considered to be one of the lead vaccine candidates against C. trachomatis. We report on the spectroscopic analysis of C. trachomatis native MOMP Serovars D, E, F, and J as well as C. muridarum MOMP by size exclusion chromatography multi angle light scattering (SEC MALS), circular dichroism (CD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). MOMP was purified from the native bacterium grown in either adherent HeLa cells or in different suspension cell lines. Our results confirm that MOMP forms homo-trimers in detergent micelles. The secondary structure composition of C. trachomatis MOMP was conserved across serovars, but different from composition of C. muridarum MOMP with a 13% (CD) to 18% (ATR-FTIR) reduction in ß-sheet conformation for C. trachomatis MOMP. When Serovar E MOMP was isolated from suspension cell lines the α-helix content increased by 7% (CD) to 13% (ATIR-FTIR). Maintenance of a native-like tertiary and quaternary structure in subunit vaccines is important for the generation of protective antibodies. This biophysical characterization of MOMP presented here serves, in the absence of functional assays, as a method for monitoring the structural integrity of MOMP.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Animales , Línea Celular , Chlamydia muridarum/química , Chlamydia trachomatis/química , Cromatografía Líquida de Alta Presión/métodos , Dicroismo Circular/métodos , Cricetulus , Humanos , Peso Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Serogrupo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Vacunas de Subunidad/química
13.
Biochem J ; 399(3): 483-91, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16827663

RESUMEN

gp120 is a subunit of the envelope glycoprotein of HIV-1. The third variable loop region of gp120 (V3 loop) contains multiple immunodominant epitopes and is also functionally important for deciding cell-tropism of the virus. 447-52D is a monoclonal antibody that recognizes the conserved tip of the V3 loop in a beta-turn conformation. This antibody has previously been shown to neutralize diverse strains of the virus. In an attempt to generate an immunogen competent to generate 447-52D-like antibodies, the known epitope of 447-52D was inserted at three different surface loop locations in the small, stable protein Escherichia coli Trx (thioredoxin). At one of the three locations (between residues 74 and 75), the insertion was tolerated, the resulting protein was stable and soluble, and bound 447-52D with an affinity similar to that of intact gp120. Upon immunization, the V3 peptide-inserted Trx scaffold was able to generate anti-V3 antibodies that could compete out 447-52D binding to gp120. Epitope mapping studies demonstrated that these anti-V3 antibodies recognized the same epitope as 447-52D. Although the 447-52D-type antibodies were estimated to be present at concentrations of 50-400 microg/ml of serum, these were not able to effect neutralization of strains like JRFL and BAL but could neutralize the sensitive MN strain. The data suggest that because of the low accessibility of the V3 loop on primary isolates such as JRFL, it will be difficult to elicit a V3-specific, 447-52D-like antibody response to effectively neutralize such isolates.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Fragmentos de Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/sangre , Afinidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Sitios de Unión de Anticuerpos/inmunología , Dicroismo Circular , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cobayas , Anticuerpos Anti-VIH/sangre , Antígenos VIH/química , Antígenos VIH/genética , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Modelos Moleculares , Datos de Secuencia Molecular , Pruebas de Neutralización , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Resonancia por Plasmón de Superficie , Tiorredoxinas/química , Tiorredoxinas/genética
14.
Biochemistry ; 45(51): 15157-67, 2006 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-17176037

RESUMEN

A growing body of evidence suggests that soluble oligomeric forms of the amyloid beta peptide known as amyloid-derived diffusible ligands (ADDLs) are the toxic species responsible for neurodegeneration associated with Alzheimer's disease. Accurate biophysical characterization of ADDL preparations is hampered by the peptide's strong tendency to self-associate and the effect of factors such as ionic strength, temperature, and pH on its behavior. In addition, amyloid peptides are known to interact with common laboratory excipients, specifically detergents, further complicating the results from standard analytical methods such as denaturing polyacrylamide gel electrophoresis. We have studied the solution behavior of various amyloid peptide preparations using analytical ultracentrifugation and size exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that ADDL preparations exist in solution primarily as a binary mixture of a monomeric peptide and high-molecular mass oligomers. We relate our findings to previously described characterizations utilizing atomic force microscopy and electrophoretic methods and demonstrate that low-molecular mass oligomers identified by gel electrophoresis likely represent artifacts induced by the peptide's interaction with detergent, while atomic force microscopy results are likely skewed by differential binding of monomeric and oligomeric peptide species. Finally, we confirm that only the high-molecular mass oligomeric components of an ADDL preparation are capable of binding to subpopulations of primary hippocampal neurons in vitro.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Soluciones , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/ultraestructura , Animales , Células Cultivadas , Cromatografía en Gel , Ligandos , Microscopía de Fuerza Atómica , Peso Molecular , Neuronas/química , Neuronas/metabolismo , Neuronas/ultraestructura , Fragmentos de Péptidos/toxicidad , Fragmentos de Péptidos/ultraestructura , Unión Proteica , Ratas
15.
Curr Top Med Chem ; 6(6): 597-608, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16712494

RESUMEN

The amyloid-beta (Abeta) cascade hypothesis of Alzheimer's disease (AD) has dominated research and subsequent therapeutic drug development for over two decades. Central to this hypothesis is the observation that Abeta is elevated in AD patients and that the disease is ultimately characterized by the central deposition of insoluble senile plaques. More recent evidence, however, suggests that the presence or absence of plaque is insufficient to fully account for the deleterious role of elevated Abeta in AD. Such studies support the basis for an alternate interpretation of the Abeta cascade hypothesis. Namely, that soluble oligomers of Abeta (i.e., ADDLs) accumulate and cause functional deficits prior to overt neuronal cell death or plaque deposition. Accordingly, the following review focuses on research describing the preparation and functional activity of ADDLs in vitro and in vivo. These studies provide the basis for an alternate, ADDL-based, view of the Abeta cascade hypothesis and accounts for the disconnect between plaque burden and cognitive deficits. Possible therapeutic approaches aimed at lowering ADDLs in AD patients are also considered.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Humanos , Ligandos
16.
Methods Mol Biol ; 1403: 385-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27076142

RESUMEN

Clostridium difficile is a gram-positive bacterium responsible for a large proportion of nosocomial infections in the developed world. C. difficile secretes toxins A and B (TcdA and TcdB) and both toxins act synergistically to induce a spectrum of pathological responses in infected individuals ranging from pseudomembranous colitis to C. difficile-associated diarrhea. Toxins A and B have been actively investigated as components of prophylactic vaccine as well as targets for therapeutic intervention with antibodies. Expression of such toxins by recombinant technology is often difficult and may require special handling and adherence to strict safety regulations during the manufacturing process due to the inherent toxicity of the proteins. Both toxins are large proteins (308 kDa and 270 kDa, respectively) and contain distinct domains mediating cell attachment, cellular translocation, and enzymatic (glucosidase) activity. Here we describe methods to produce fragments of Toxin B for their subsequent evaluation as components of experimental C. difficile vaccines. Methods presented include selection of fragments encompassing distinct functional regions of Toxin B, purification methods to yield high quality proteins, and analytical evaluation techniques. The approach presented focuses on Toxin B but could be applied to the other component, Toxin A, and/or to any difficult to express or toxic protein.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Clostridium/prevención & control , Animales , Antígenos Bacterianos/inmunología , Clostridioides difficile/inmunología , Infecciones por Clostridium/inmunología , Diseño de Fármacos , Humanos , Vacunas de Subunidad/inmunología
17.
MAbs ; 7(4): 707-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996084

RESUMEN

Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Células Productoras de Anticuerpos/inmunología , Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Región Variable de Inmunoglobulina , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Macaca mulatta , Análisis de Secuencia de Proteína
18.
Curr HIV Res ; 2(2): 193-204, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078183

RESUMEN

The HIV-1 gp41 envelope glycoprotein mediates fusion of the viral and cellular membranes. The core of the gp41 ectodomain undergoes a receptor-triggered conformational transition forming a trimeric, alpha-helical coiled-coil structure. This trimer-of-hairpins species facilitates insertion of the viral envelope protein into the host cell membrane promoting viral entry. The prefusogenic conformation of gp41 is capable of stimulating a neutralizing antibody immune response and is therefore an attractive therapeutic target. Several broadly neutralizing HIV-1 monoclonal antibodies which bind to gp41 have been characterized and include 4E10, Z13 and 2F5. A conserved segment of gp41 (residues 661-684) has been identified as the epitope for the HIV-1 neutralizing antibody 2F5 (MAb 2F5). MAb 2F5 has attracted considerable attention because of the highly conserved recognition epitope and the ability to neutralize both laboratory-adapted and primary viral isolates. Antibodies which recognize the immunodominant regions of gp41 may provide protection against HIV infection if elicited at appropriate concentrations. Here we review the rational design, structure-activity relationships and conformational features of both linear and constrained peptide immunogens incorporating variants of both the 2F5 epitope and the gp41 ectodomain. This review describes a rational design approach combining structural characterization with traditional SAR to optimize MAb 2F5 antibody affinities of gp41-based peptide immunogens. The immunogens are shown to stimulate a high titer, peptide-specific immune response; however, the resulting antisera were incapable of viral neutralization. The implication of these findings with regard to structural and immunological considerations is discussed.


Asunto(s)
Vacunas contra el SIDA , Proteína gp41 de Envoltorio del VIH/inmunología , Vacunas contra el SIDA/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Secuencia Conservada , Diseño de Fármacos , Epítopos/genética , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/química , Humanos , Datos de Secuencia Molecular , Pruebas de Neutralización , Conformación Proteica , Estructura Secundaria de Proteína , Vacunas de Subunidad/inmunología
19.
Carbohydr Res ; 338(9): 903-22, 2003 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-12681914

RESUMEN

Colonization of implanted medical devices by coagulase-negative staphylococci such as Staphylococcus epidermidis is mediated by the bacterial polysaccharide intercellular adhesin (PIA), a polymer of beta-(1-->6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents. The icaADBC locus containing the biosynthetic genes for production of PIA has been identified in both S. epidermidis and S. aureus. Whereas it is clear that PIA is a constituent that contributes to the virulence of S. epidermidis, it is less clear what role PIA plays in infection with S. aureus. Recently, identification of a novel polysaccharide antigen from S. aureus termed poly N-succinyl beta-(1-->6)-glucosamine (PNSG) has been reported. This polymer was composed of the same glycan backbone as PIA but was reported to contain a high proportion of N-succinylation rather than acetylation. We have isolated a glucosamine-containing exopolysaccharide from the constitutive over-producing MN8m strain of S. aureus in order to prepare polysaccharide-protein conjugate vaccines. In this report we demonstrate that MN8m produced a high-molecular-weight (>300,000 Da) polymer of beta-(1-->6)-linked glucosamine containing 45-60% N-acetyl, and a small amount of O-succinyl (approx 10% mole ratio to monosaccharide units). By detailed NMR analyses of polysaccharide preparations, we show that the previous identification of N-succinyl was an analytical artifact. The exopolysaccharide we have isolated is active in in vitro hemagglutination assays and is immunogenic in mice when coupled to a protein carrier. We therefore conclude that S. aureus strain MN8m produces a polymer that is chemically and biologically closely related to the PIA produced by S. epidermidis.


Asunto(s)
Polisacáridos Bacterianos/inmunología , Polisacáridos Bacterianos/aislamiento & purificación , Staphylococcus aureus/química , Animales , Conformación de Carbohidratos , Cromatografía en Gel , Ensayo de Inmunoadsorción Enzimática , Pruebas de Hemaglutinación , Ácidos Levulínicos/análisis , Ácidos Levulínicos/química , Espectroscopía de Resonancia Magnética , Ratones , Peso Molecular , Polisacáridos Bacterianos/química
20.
Vaccine ; 32(24): 2812-8, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24662701

RESUMEN

Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Clostridium/prevención & control , Enterocolitis Seudomembranosa/prevención & control , Enterotoxinas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Clostridioides difficile , Inmunoglobulina G/sangre , Masculino , Mesocricetus , Pruebas de Neutralización , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA