Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Theor Appl Genet ; 134(7): 2235-2252, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33903985

RESUMEN

KEY MESSAGE: Non-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance. In the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.


Asunto(s)
Genómica , Modelos Genéticos , Saccharum/genética , Variación Genética , Genotipo , Fenotipo , Fitomejoramiento
2.
Theor Appl Genet ; 134(5): 1455-1462, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33590303

RESUMEN

KEY MESSAGE: Complex traits in sugarcane can be accurately predicted using genome-wide DNA markers. Genomic single-step prediction is an attractive method for genomic selection in commercial breeding programs. Sugarcane breeding programs have achieved up to 1% genetic gain in key traits such as tonnes of cane per hectare (TCH), commercial cane sugar (CCS) and Fibre content over the past decades. Here, we assess the potential of genomic selection to increase the rate of genetic gain for these traits by deriving genomic estimated breeding values (GEBVs) from a reference population of 3984 clones genotyped for 26 K SNP. We evaluated the three different genomic prediction approaches GBLUP, genomic single step (GenomicSS), and BayesR. GenomicSS combining pedigree and SNP information from historic and recent breeding programs achieved the most accurate predictions for most traits (0.3-0.44). This method is attractive for routine genetic evaluation because it requires relatively little modification to the existing evaluation and results in breeding value estimates for all individuals, not only those genotyped. Adding information from early-stage trials added up to 5% accuracy for CCS and Fibre, but 0% for TCH, reflecting the importance of competition effects for TCH. These GEBV accuracies are sufficiently high that, combined with the right breeding strategy, a doubling of the rate of genetic gain could be achieved. We also assessed the flowering traits days to flowering, gender and pollen viability and found high heritabilities of 0.57, 0.78 and 0.72, respectively. The GEBV accuracies indicated that genomic selection could be used to improve these traits. This could open new avenues for breeders to manage their breeding programs, for example, by synchronising flowering time and selecting males with high pollen viability.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta , Herencia Multifactorial , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Saccharum/genética , Mapeo Cromosómico/métodos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genética de Población , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo
3.
Plant Cell Rep ; 36(11): 1775-1783, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849385

RESUMEN

KEY MESSAGE: Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Plantas Modificadas Genéticamente/genética , Saccharum/genética , Actinas/genética , Adenina Fosforribosiltransferasa/genética , Destrina/genética , Dosificación de Gen/genética , Reacción en Cadena de la Polimerasa , Transgenes/genética
4.
Plant Biotechnol J ; 12(4): 411-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24330327

RESUMEN

Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques.


Asunto(s)
Agricultura , Agrobacterium tumefaciens/metabolismo , Biolística/métodos , Saccharum/crecimiento & desarrollo , Saccharum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Biomasa , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo Genético , Carácter Cuantitativo Heredable , Transformación Genética , Transgenes
5.
Mol Ecol Resour ; 22(3): 1055-1064, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34695303

RESUMEN

Culture-independent survey techniques are fundamental tools when assessing plant microbiomes. These methods rely on DNA that is carefully preserved after collecting samples to achieve meaningful results. Immediately freezing samples to -80°C after collection is considered one of the most robust methods for preserving samples before DNA extraction but is often impractical. Preservation solutions can solve this problem, but commercially available products are expensive, and there is limited data comparing their efficacy with other preservation methods. In this study, we compared the impact of three methods of sample preservation on plant microbiome surveys: (1) RNAlater, a proprietary preservative, (2) a home-made salt-saturated dimethyl sulphoxide preservation solution (DESS), and (3) freezing at -80°C. DESS-preserved samples, stored at room temperature for up to four weeks, did not show any significant differences to samples frozen at -80°C, while RNAlater inflated bacterial alpha diversity. Preservation treatments did not distinctively influence fungal alpha diversity. Our results demonstrate that DESS is a versatile and inexpensive preservative of DNA in plant material for diversity analyses of fungi and bacteria.


Asunto(s)
Microbiota , Bacterias/genética , Congelación , Preservación Biológica/métodos , Manejo de Especímenes/métodos
6.
Plant Cell Rep ; 29(2): 173-83, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20041254

RESUMEN

A reproducible method for transformation of sugarcane using various strains of Agrobacterium tumefaciens (A. tumefaciens) (AGL0, AGL1, EHA105 and LBA4404) has been developed. The selection system and co-cultivation medium were the most important factors determining the success of transformation and transgenic plant regeneration. Plant regeneration at a frequency of 0.8-4.8% occurred only when callus was transformed with A. tumefaciens carrying a newly constructed superbinary plasmid containing neomycin phosphotransferase (nptII) and beta-glucuronidase (gusA) genes, both driven by the maize ubiquitin (ubi-1) promoter. Regeneration was successful in plants carrying the nptII gene but not the hygromycin phosphotransferase (hph) gene. NptII gene selection was imposed at a concentration of 150 mg/l paromomycin sulphate and applied either immediately or 4 days after the co-cultivation period. Co-cultivation on Murashige and Skoog (MS)-based medium for a period of 4 days produced the highest number of transgenic plants. Over 200 independent transgenic lines were created using this protocol. Regenerated plants appeared phenotypically normal and contained both gusA and nptII genes. Southern blot analysis revealed 1-3 transgene insertion events that were randomly integrated in the majority of the plants produced.


Asunto(s)
Medios de Cultivo , Ingeniería Genética/métodos , Saccharum/genética , Agrobacterium tumefaciens/genética , Cinamatos/farmacología , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Higromicina B/análogos & derivados , Higromicina B/farmacología , Paromomicina/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plásmidos , Saccharum/metabolismo , Transformación Genética , Transgenes
7.
Methods Mol Biol ; 2124: 217-228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277456

RESUMEN

Biolistic transformation is one of two popular methods for introducing genes into sugarcane. However, unlike Agrobacterium-mediated transformation, the efficiency of gene transfer into sugarcane cells, using the biolistic method is very high. In addition to this, the biolistic transformation method is independent of the explant genotype or tissue. It also has the advantage that a minimum DNA sequence of linearized plasmid can be used, thus eliminating the introduction of undesirable plasmid derived genes, delivering low-copy transgenic events. In this chapter, we describe the method for efficient delivery of genes into sugarcane cells using a biolistic approach.


Asunto(s)
Biolística/métodos , Saccharum/genética , ADN de Plantas/genética , Oro/química , Plantas Modificadas Genéticamente , Regeneración
8.
Funct Plant Biol ; 43(6): 523-533, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480482

RESUMEN

Photosynthesis, stomatal conductance, electron transport, internal CO2 and sugar levels were determined in the leaves of Yellow Canopy Syndrome (YCS) symptomatic sugarcane (Saccharum spp.) plants. Two varieties from two different geographic regions in Australia, KQ228 and Q200 were used. Although visual yellowing was only evident in the lower leaves of the canopy (older than Leaf 5), photosynthesis and stomatal conductance were lower in both the yellowing leaves and those not yet showing any visible symptoms. On a canopy basis, photosynthesis was reduced by 14% and 36% in YCS symptomatic KQ228 and Q200 plants, respectively. Sucrose levels increased significantly in the leaves, reflecting some of the earliest changes induced in YCS symptomatic plants. The electron transport characteristics of dark-adapted leaves showed disruptions on both the electron acceptor and donor side of PSII. Some of these changes are characteristic of a degree of disruption to the protein structure associated with the electron transport chain. Based on the results, we propose that the first change in metabolism in the YCS symptomatic plants was an increase in sucrose in the leaves and that all the other changes are secondary effects modulated by the increased sugar levels.

9.
Mol Plant ; 4(4): 697-712, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21459832

RESUMEN

NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/fisiología , Regulación hacia Arriba , Sequías , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcripción Genética , Triticum/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA