Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO J ; 29(7): 1272-84, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20186124

RESUMEN

Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.


Asunto(s)
Carcinoma/metabolismo , Neoplasias del Colon/metabolismo , Genes mos , Mitosis , Poliploidía , Proteína p53 Supresora de Tumor/metabolismo , Aneuploidia , Animales , Carcinoma/genética , Línea Celular Tumoral , Centrosoma/metabolismo , Inestabilidad Cromosómica , Neoplasias del Colon/genética , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Proteína p53 Supresora de Tumor/genética
2.
JOP ; 15(4): 308-9, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25076328

RESUMEN

Pancreatic adenocarcinoma is a highly aggressive cancer, with a median patient survival of less than one year. Clinically useful biomarkers capable of accurately assessing prognosis, as well as response to therapy, are urgently needed. At the 2014 ASCO Annual Meeting, Maus et al. (Abstract #e15199) and Neuzillet et al. (Abstract #e15200) present data on use of c-met as a prognostic biomarker, and Shultz et al. (Abstract #4133) use a multiplex antibody panel to identify predictive markers of response to gemcitabine and erlotinib.


Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/sangre , Adenocarcinoma/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Antígeno Carcinoembrionario/sangre , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/sangre , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Análisis de Supervivencia
3.
EMBO J ; 28(5): 578-90, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19165151

RESUMEN

Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre-apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)-sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2alpha, followed by partial activation of caspase-8 (but not caspase-3), caspase-8-mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE-dependent exocytosis. Knock-in mutation of eIF2alpha (to make it non-phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase-8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.


Asunto(s)
Antineoplásicos/farmacología , Calreticulina/fisiología , Muerte Celular/inmunología , Retículo Endoplásmico/metabolismo , Antraciclinas/inmunología , Antraciclinas/farmacología , Antineoplásicos/inmunología , Apoptosis , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Exocitosis , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Compuestos Organoplatinos/inmunología , Compuestos Organoplatinos/farmacología , Oxaliplatino , Fosforilación , Proteínas SNARE/metabolismo , Rayos Ultravioleta , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , eIF-2 Quinasa/metabolismo
4.
Hum Mol Genet ; 19(6): 987-1000, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20026556

RESUMEN

Human Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1. Using RNA interference approaches in both Drosophila melanogaster cultured cells and the adult fly, we have assayed the effects of down-regulating the LETM1 gene on mitochondrial function. We also show that DmLETM1 complements growth and mitochondrial K(+)/H(+) exchange (KHE) activity in yeast deficient for LETM1. Genetic studies allowing the conditional inactivation of LETM1 function in specific tissues demonstrate that the depletion of DmLETM1 results in roughening of the adult eye, mitochondrial swelling and developmental lethality in third-instar larvae, possibly the result of deregulated mitophagy. Neuronal specific down-regulation of DmLETM1 results in impairment of locomotor behavior in the fly and reduced synaptic neurotransmitter release. Taken together our results demonstrate the function of DmLETM1 as a mitochondrial osmoregulator through its KHE activity and uncover a pathophysiological WHS phenotype in the model organism D. melanogaster.


Asunto(s)
Antiportadores/genética , Proteínas de Unión al Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutación/genética , Convulsiones/complicaciones , Convulsiones/genética , Síndrome de Wolf-Hirschhorn/complicaciones , Síndrome de Wolf-Hirschhorn/genética , Secuencia de Aminoácidos , Animales , Antiportadores/química , Antiportadores/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Ojo/patología , Ojo/ultraestructura , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Actividad Motora/fisiología , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Sistema Nervioso/ultraestructura , Neurotransmisores/metabolismo , Especificidad de Órganos , Interferencia de ARN , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Sinapsis/metabolismo , Sinapsis/ultraestructura
5.
Curr Opin Immunol ; 20(5): 504-11, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18573340

RESUMEN

Physiological cell death, which occurs as a continuous byproduct of cellular turnover, is non-immunogenic or even tolerogenic, thereby avoiding autoimmunity. By contrast, cancer cell death elicited by radiotherapy and some chemotherapeutic agents such as anthracyclines is immunogenic. Recent data suggest that innate and cognate immune responses elicited by such anti-cancer agents are required for an optimal therapeutic outcome, underscoring the clinical relevance of immunogenic cell death. Here we discuss the concept that immunogenic death involves changes in the composition of the cell surface, as well as the release of soluble immunogenic signals that occur in a defined temporal sequence. This 'key' then operates on a series of receptors expressed by dendritic cells (DC, the 'lock') to allow for the presentation of tumor antigens to T cells and for the initiation of a productive immune response. Immunogenic cell death is characterized by the early cell surface exposure of chaperones including calreticulin and/or heat shock proteins, which determine the uptake of tumor antigens and/or affect DC maturation. Moreover, the late release of High mobility group box 1 (HMGB1), which acts on toll-like receptor 4 (TLR4), is required for optimal presentation of antigens from dying tumor cells. Nonetheless, numerous details on the molecular events that define immunogenicity remain to be defined, both at the level of the dying cancer cells and at the level of the responding innate effectors.


Asunto(s)
Antígenos de Neoplasias/inmunología , Apoptosis/inmunología , Células Dendríticas/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Calreticulina/inmunología , Calreticulina/metabolismo , Células Dendríticas/metabolismo , Proteína HMGB1/inmunología , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Humanos , Activación de Linfocitos/inmunología , Ratones , Neoplasias/patología , Linfocitos T/metabolismo , Receptor Toll-Like 4/inmunología
6.
Nat Cell Biol ; 6(3): 215-26, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15039780

RESUMEN

During the development of multicellular organisms, concerted actions of molecular signalling networks determine whether cells undergo proliferation, differentiation, death or ageing. Here we show that genetic inactivation of the stress signalling kinase, MKK7, a direct activator of JNKs in mice, results in embryonic lethality and impaired proliferation of hepatocytes. Beginning at passage 4-5, mkk7(-/-) mouse embryonic fibroblasts (MEFs) display impaired proliferation, premature senescence and G2/M cell cycle arrest. Similarly, loss of c-Jun or expression of a c-JunAA mutant in which the JNK phosphorylation sites were replaced with alanine results in a G2/M cell-cycle block. The G2/M cell-cycle kinase CDC2 was identified as a target for the MKK7-JNK-c-Jun pathway. These data show that the MKK7-JNK-c-Jun signalling pathway couples developmental and environmental cues to CDC2 expression, G2/M cell cycle progression and cellular senescence in fibroblasts.


Asunto(s)
Senescencia Celular/genética , Fase G2/genética , Hepatocitos/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/deficiencia , Mitosis/genética , Estrés Fisiológico/enzimología , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Feto , Fibroblastos/citología , Fibroblastos/enzimología , Genes Letales/genética , Hepatocitos/citología , Proteínas Quinasas JNK Activadas por Mitógenos , Hígado/anomalías , Hígado/patología , MAP Quinasa Quinasa 7 , Sistema de Señalización de MAP Quinasas/genética , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Fosforilación , Proteínas Proto-Oncogénicas c-jun/deficiencia , Proteínas Proto-Oncogénicas c-jun/genética , Estrés Fisiológico/genética
7.
Neuron ; 43(5): 715-28, 2004 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-15339652

RESUMEN

Circadian rhythms of physiology and behavior are generated by biological clocks that are synchronized to the cyclic environment by photic or nonphotic cues. The interactions and integration of various entrainment pathways to the clock are poorly understood. Here, we show that the Ras-like G protein Dexras1 is a critical modulator of the responsiveness of the master clock to photic and nonphotic inputs. Genetic deletion of Dexras1 reduces photic entrainment by eliminating a pertussis-sensitive circadian response to NMDA. Mechanistically, Dexras1 couples NMDA and light input to Gi/o and ERK activation. In addition, the mutation greatly potentiates nonphotic responses to neuropeptide Y and unmasks a nonphotic response to arousal. Thus, Dexras1 modulates the responses of the master clock to photic and nonphotic stimuli in opposite directions. These results identify a signaling molecule that serves as a differential modulator of the gated photic and nonphotic input pathways to the circadian timekeeping system.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Unión al GTP/fisiología , Células Ganglionares de la Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Vías Visuales/metabolismo , Proteínas ras/fisiología , Animales , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/genética , Ácido Glutámico/metabolismo , Luz , Fototransducción/efectos de los fármacos , Fototransducción/genética , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Neuropéptido Y/metabolismo , Toxina del Pertussis/farmacología , Estimulación Luminosa , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de la radiación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Vías Visuales/citología , Vías Visuales/efectos de la radiación , Proteínas ras/genética
8.
Mol Cell Biol ; 25(23): 10261-72, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287843

RESUMEN

Cardiac and skeletal muscle critically depend on mitochondrial energy metabolism for their normal function. Recently, we showed that apoptosis-inducing factor (AIF), a mitochondrial protein implicated in programmed cell death, plays a role in mitochondrial respiration. However, the in vivo consequences of AIF-regulated mitochondrial respiration resulting from a loss-of-function mutation in Aif are not known. Here, we report tissue-specific deletion of Aif in the mouse. Mice in which Aif has been inactivated specifically in cardiac and skeletal muscle exhibit impaired activity and protein expression of respiratory chain complex I. Mutant animals develop severe dilated cardiomyopathy, heart failure, and skeletal muscle atrophy accompanied by lactic acidemia consistent with defects in the mitochondrial respiratory chain. Isolated hearts from mutant animals exhibit poor contractile performance in response to a respiratory chain-dependent energy substrate, but not in response to glucose, supporting the notion that impaired heart function in mutant animals results from defective mitochondrial energy metabolism. These data provide genetic proof that the previously defined cell death promoter AIF has a second essential function in mitochondrial respiration and aerobic energy metabolism required for normal heart function and skeletal muscle homeostasis.


Asunto(s)
Factor Inductor de la Apoptosis/deficiencia , Factor Inductor de la Apoptosis/metabolismo , Cardiomiopatía Dilatada/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Atrofia Muscular/patología , Animales , Factor Inductor de la Apoptosis/genética , Biomarcadores , Cardiomiopatía Dilatada/embriología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Glucosa/metabolismo , Ratones , Ratones Transgénicos , Atrofia Muscular/embriología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mutación/genética , Estrés Oxidativo
9.
Trends Genet ; 18(3): 142-9, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11858838

RESUMEN

Programmed cell death is used by multicellular organisms to eliminate excess, damaged or harmful cells. This process of cell suicide, defined in morphological terms as apoptosis, is crucial for developmental morphogenesis, tissue homeostasis and defense against pathogens. Over the past decade, our understanding of the genetic basis of the cell death machinery has grown exponentially using genetically modified organisms. In particular, inactivation of genes involved in cell death using homologous recombination in mice has provided an invaluable tool to understand the mechanisms, as well as the structural and functional consequences, of programmed cell death in mammals. This review discusses recent insights into the cellular death program as revealed by these mutant animals.


Asunto(s)
Apoptosis/genética , Animales , Humanos , Ratones , Ratones Noqueados , Neuronas/fisiología , Receptores del Factor de Necrosis Tumoral/fisiología , Transducción de Señal/fisiología
10.
Ann N Y Acad Sci ; 1171: 2-11, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19723031

RESUMEN

Since its discovery nearly a decade ago, apoptosis-inducing factor (AIF) has had anything but a staid and uneventful existence. AIF was originally described as a mitochondrial intermembrane protein that, after apoptosis induction, can translocate to the nucleus and trigger chromatin condensation and DNA fragmentation. Over the years, an AIF-mediated caspase-independent cell death pathway has been defined. Rather than functioning as a general component of the cell death machinery, AIF is required for specific cell death pathways, including lethal responses to excitotoxins such as N-methyl-D-aspartate and glutamate, the DNA-alkylating agent N-methyl-N'-nitro-N-nitroso-guanidine, hypoxia-ischemia, or growth factor deprivation. Also, important roles of AIF in mitochondrial metabolism and redox control, and more recently in obesity and diabetes, have been discovered. Much of our knowledge has come from studies of AIF orthologs in model organisms, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mice, which have also highlighted the importance of AIF in animal physiology and human pathology. Here, we discuss the manifold nature of AIF in cell life and death, with particular emphasis of its roles in vivo.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/fisiología , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/genética , Factor Inductor de la Apoptosis/genética , Humanos , Modelos Biológicos , Mutación , Transporte de Proteínas , Transducción de Señal/genética
11.
Cell Cycle ; 8(9): 1380-5, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19342895

RESUMEN

Tetraploidy may constitute a metastable state leading to numeric and structural chromosome abnormalities that are associated with cancer. Here, we show that cultured primary p53(-/-) (but not wild type, WT) mouse mammary epithelial cells (MMECs) accumulate a tetraploid sub-population in vitro. This occurs spontaneously, yet can be exacerbated by the addition of microtubule inhibitors as well as of inhibitors of cytokinesis. As compared to WT cells, tetraploid p53(-/-) MMECs contain supernumerary centrosomes and exhibit a reduced propensity to initiate the mitochondrial pathway of apoptosis. Moreover, tetraploid p53(-/-) MMECs are more resistant against anthracyclin-induced cell killing than their diploid counterparts. Altogether, these data indicate that p53 normally suppresses the generation of tetraploid cells, presumably by activating the intrinsic pathway of apoptosis. In the absence of p53, tetraploid cells accumulate as a result of inhibited apoptosis, which contributes to the acquisition of chemotherapy resistance.


Asunto(s)
Apoptosis , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/citología , Poliploidía , Proteína p53 Supresora de Tumor/metabolismo , Animales , Muerte Celular , Linaje de la Célula , Células Cultivadas , Centrosoma/metabolismo , Ratones , Ratones Endogámicos C57BL
12.
Biochem Soc Trans ; 36(Pt 5): 786-90, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18793137

RESUMEN

Macroautophagy, often referred to as autophagy, designates the process by which portions of the cytoplasm, intracellular organelles and long-lived proteins are engulfed in double-membraned vacuoles (autophagosomes) and sent for lysosomal degradation. Basal levels of autophagy contribute to the maintenance of intracellular homoeostasis by ensuring the turnover of supernumerary, aged and/or damaged components. Under conditions of starvation, the autophagic pathway operates to supply cells with metabolic substrates, and hence represents an important pro-survival mechanism. Moreover, autophagy is required for normal development and for the protective response to intracellular pathogens. Conversely, uncontrolled autophagy is associated with a particular type of cell death (termed autophagic, or type II) that is characterized by the massive accumulation of autophagosomes. Regulators of apoptosis (e.g. Bcl-2 family members) also modulate autophagy, suggesting an intimate cross-talk between these two degradative pathways. It is still unclear whether autophagic vacuolization has a causative role in cell death or whether it represents the ultimate attempt of cells to cope with lethal stress. For a multicellular organism, autophagic cell death might well represent a pro-survival mechanism, by providing metabolic supplies during whole-body nutrient deprivation. Alternatively, type II cell death might contribute to the disposal of cell corpses when heterophagy is deficient. Here, we briefly review the roles of autophagy in cell death and its avoidance.


Asunto(s)
Autofagia/fisiología , Muerte Celular/fisiología , Animales , Supervivencia Celular , Humanos
13.
Cell ; 131(3): 476-91, 2007 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17981116

RESUMEN

Type-2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Recent studies place altered mitochondrial oxidative phosphorylation (OxPhos) as an underlying genetic element of insulin resistance. However, the causative or compensatory nature of these OxPhos changes has yet to be proven. Here, we show that muscle- and liver-specific AIF ablation in mice initiates a pattern of OxPhos deficiency closely mimicking that of human insulin resistance, and contrary to current expectations, results in increased glucose tolerance, reduced fat mass, and increased insulin sensitivity. These results are maintained upon high-fat feeding and in both genetic mosaic and ubiquitous OxPhos-deficient mutants. Importantly, the effects of AIF on glucose metabolism are acutely inducible and reversible. These findings establish that tissue-specific as well as global OxPhos defects in mice can counteract the development of insulin resistance, diabetes, and obesity.


Asunto(s)
Factor Inductor de la Apoptosis/deficiencia , Diabetes Mellitus/prevención & control , Eliminación de Gen , Marcación de Gen , Mitocondrias/metabolismo , Obesidad/prevención & control , Fosforilación Oxidativa , Animales , Factor Inductor de la Apoptosis/genética , Respiración de la Célula/efectos de los fármacos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Dieta/efectos adversos , Glucosa/metabolismo , Insulina/farmacología , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mosaicismo/efectos de los fármacos , Músculos/citología , Músculos/efectos de los fármacos , Músculos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Especificidad de Órganos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , Especificidad por Sustrato/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 103(26): 9918-23, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16788063

RESUMEN

Apoptosis-inducing factor (AIF) is an evolutionarily conserved, ubiquitously expressed flavoprotein with NADH oxidase activity that is normally confined to mitochondria. In mammalian cells, AIF is released from mitochondria in response to apoptotic stimuli and translocates to the nucleus where it is thought to bind DNA and contribute to chromatinolysis and cell death in a caspase-independent manner. Here we describe the consequences of inactivating Aif in the early mouse embryo. Unexpectedly, we found that both the apoptosis-dependent process of cavitation in embryoid bodies and apoptosis associated with embryonic neural tube closure occur in the absence of AIF, indicating that Aif function is not required for apoptotic cell death in early mouse embryos. By embryonic day 9 (E9), loss of Aif function causes abnormal cell death, presumably because of reduced mitochondrial respiratory chain complex I activity. Because of this cell death, Aif null embryos fail to increase significantly in size after E9. Remarkably, patterning processes continue on an essentially normal schedule, such that E10 Aif null embryos with only approximately 1/10 the normal number of cells have the same somite number as their wild-type littermates. These observations show that pattern formation in the mouse can occur independent of embryo size and cell number.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Tipificación del Cuerpo , Complejo I de Transporte de Electrón/metabolismo , Desarrollo Embrionario , Genes Letales , Animales , Factor Inductor de la Apoptosis/genética , Tipificación del Cuerpo/genética , Recuento de Células , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/ultraestructura , Desarrollo Embrionario/genética , Femenino , Ratones , Ratones Endogámicos , Mitocondrias/enzimología , Mutación
15.
EMBO J ; 25(17): 4061-73, 2006 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16917506

RESUMEN

The mitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear. Here, we dissociate these dual roles using mitochondrially anchored AIF that cannot be released during apoptosis. Forebrain-specific AIF null (tel. AifDelta) mice have defective cortical development and reduced neuronal survival due to defects in mitochondrial respiration. Mitochondria in AIF deficient neurons are fragmented with aberrant cristae, indicating a novel role of AIF in controlling mitochondrial structure. While tel. AifDelta Apaf1(-/-) neurons remain sensitive to DNA damage, mitochondrially anchored AIF expression in these cells significantly enhanced survival. AIF mutants that cannot translocate into nucleus failed to induce cell death. These results indicate that the proapoptotic role of AIF can be uncoupled from its physiological function. Cell death induced by AIF is through its proapoptotic activity once it is translocated to the nucleus, not due to the loss of AIF from the mitochondria.


Asunto(s)
Factor Inductor de la Apoptosis/fisiología , Apoptosis , Mitocondrias/fisiología , Adenosina Trifosfato/metabolismo , Animales , Factor Inductor de la Apoptosis/genética , Supervivencia Celular , Células Cultivadas , Daño del ADN , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Consumo de Oxígeno , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Transporte de Proteínas
16.
EMBO J ; 23(23): 4679-89, 2004 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-15526035

RESUMEN

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, after apoptosis induction, translocates to the nucleus where it participates in apoptotic chromatinolysis. Here, we show that human or mouse cells lacking AIF as a result of homologous recombination or small interfering RNA exhibit high lactate production and enhanced dependency on glycolytic ATP generation, due to severe reduction of respiratory chain complex I activity. Although AIF itself is not a part of complex I, AIF-deficient cells exhibit a reduced content of complex I and of its components, pointing to a role of AIF in the biogenesis and/or maintenance of this polyprotein complex. Harlequin mice with reduced AIF expression due to a retroviral insertion into the AIF gene also manifest a reduced oxidative phosphorylation (OXPHOS) in the retina and in the brain, correlating with reduced expression of complex I subunits, retinal degeneration, and neuronal defects. Altogether, these data point to a role of AIF in OXPHOS and emphasize the dual role of AIF in life and death.


Asunto(s)
Proteínas de la Membrana/deficiencia , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis , Factor Inductor de la Apoptosis , Encéfalo/metabolismo , Células Cultivadas , Complejo I de Transporte de Electrón/biosíntesis , Complejo III de Transporte de Electrones/biosíntesis , Flavoproteínas/genética , Flavoproteínas/metabolismo , Glucosa/metabolismo , Humanos , Ácido Láctico/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Miocardio/metabolismo , Especificidad de Órganos , Fosforilación Oxidativa , Filogenia , ARN Interferente Pequeño/metabolismo , Retina/metabolismo , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
17.
Cell ; 108(1): 31-43, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11792319

RESUMEN

Control and treatment of chronic pain remain major clinical challenges. Progress may be facilitated by a greater understanding of the mechanisms underlying pain processing. Here we show that the calcium-sensing protein DREAM is a transcriptional repressor involved in modulating pain. dream(-/-) mice displayed markedly reduced responses in models of acute thermal, mechanical, and visceral pain. dream(-/-) mice also exhibited reduced pain behaviors in models of chronic neuropathic and inflammatory pain. However, dream(-/-) mice showed no major defects in motor function or learning and memory. Mice lacking DREAM had elevated levels of prodynorphin mRNA and dynorphin A peptides in the spinal cord, and the reduction of pain behaviors in dream(-/-) mice was mediated through dynorphin-selective kappa (kappa)-opiate receptors. Thus, DREAM appears to be a critical transcriptional repressor in pain processing.


Asunto(s)
Proteínas de Unión al Calcio , Neuralgia/fisiopatología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética/fisiología , Animales , Secuencia de Bases , Conducta Animal/fisiología , Células Cultivadas , Secuencia de Consenso , Regulación hacia Abajo/fisiología , Encefalinas/genética , Encefalinas/metabolismo , Corazón/fisiología , Hiperalgesia/fisiopatología , Inflamación/fisiopatología , Proteínas de Interacción con los Canales Kv , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/inmunología , Neuronas/citología , Neuronas/fisiología , Estimulación Física , Presenilina-1 , Presenilina-2 , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Médula Espinal/citología , Estimulación Química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA