Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Soft Matter ; 20(11): 2584-2591, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415992

RESUMEN

The interplay between polyphenols, amines, and metals has broad implications for surface chemistry, biomaterials, energy storage, and environmental science. Traditionally, polyphenol-amine combinations have been recognized for their ability to form adhesive, material-independent thin layers that offer a diverse range of surface functionalities. Herein, we demonstrate that a coating of tannic acid (TA) and polyethyleneimine (PEI) provides an efficient platform for capturing and monitoring metal ions in water. A unique feature of our PEI/TA-coated microbeads is the 'Detection-Capture' (Detec-Ture) mechanism. The galloyl groups in TA coordinate with Fe(III) ions (capture), initiating their oxidation to gallol-quinone. These oxidized groups subsequently react with PEI amines, leading to the formation of an Fe(II/III)-gallol-PEI network that produces a vivid purple color, thereby enabling visual detection. This mechanism couples metal capture directly with detection, distinguishing our approach from existing studies, which have either solely focused on metal removal or metal detection. The metal capturing capacity of our materials stands at 0.55 mg g-1, comparable to that of established materials like alginate and wollastonite. The detection sensitivity reaches down to 0.5 ppm. Our findings introduce a novel approach to the utility of metal-polyphenol-amine networks, presenting a new class of materials suited for simultaneous metal ion detection and capture in environmental applications.

2.
Langmuir ; 39(19): 6740-6747, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37130261

RESUMEN

Recently, miraculous therapy approaches involving adeno-associated virus (AAV) for incurable diseases such as spinal muscular atrophy and inherited retinal dysfunction have been introduced. Nonreplicative, nonpathogenic, low rates of chromosome insertional properties and the existence of neutralizing antibodies are main safety reasons why the FDA approved its use in gene delivery. To date, AAV production always results in a mixture of nontherapeutic (empty) and therapeutic (DNA-loaded) full capsids (10-98%). Such existence of empty viral particles inevitably increases viral doses to human. Thus, the rapid monitoring of empty capsids and reducing the empty-to-full ratio are critical in AAV science. However, transmission electron microscopy (TEM) is the primary tool for distinguishing between empty and full capsids, which creates a research bottleneck because of instrument accessibility and technical difficulty. Herein, we demonstrate that atomic force microscopy (AFM) can be an alternative tool to TEM. The simple, noncontact-mode imaging of AAV particles allows the distinct height difference between full capsids (∼22 nm) and empty capsids (∼16 nm). The sphere-to-ellipsoidal morphological distortion observed for empty AAV particles clearly distinguishes them from full AAV particles. Our study indicates that AFM imaging can be an extremely useful, quality-control tool in AAV particle monitoring, which is beneficial for the future development of AAV-based gene therapy.


Asunto(s)
Cápside , Dependovirus , Humanos , Dependovirus/genética , Microscopía de Fuerza Atómica , Vectores Genéticos , ADN
3.
ACS Omega ; 9(2): 2953-2961, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250346

RESUMEN

This study explores a polyphenolic coacervate, named VATA, formed by poly(vinyl alcohol) (PVA) and tannic acid (TA). Distinct from conventional studies that have focused on the bottom, dense phase of coacervates, this research emphasizes the top, dilute phase, low-viscous coacervate liquid termed liquid-VATA (l-VATA). Due to TA's capability of intermolecular association as well as adhesiveness, phenomena not typically observed in the upper dilute phase of standard polyelectrolyte-based coacervates are revealed. At first glance, the dilute phase l-VATA coacervate resembles a water-like, low-viscous mixture solution of PVA, TA, and PVA/TA complexes. However, analysis shows that nearly all of the TA molecules associate with PVA chains, forming PVA/TA complexes. Furthermore, supraparticular association was observed between PVA/TA complex nanoparticles upon applying external shear force. A broad survey of shear rate and strain showed that the solution exhibited sequential shear-thickening, followed by shear-thinning behavior. The water-like, low viscosity of l-VATA unexpectedly reveals robust adhesiveness and thus able to lift an entire mouse using just a single human hair strand. Even in cases of failure, no interfacial failure was detected between mouse and human hair. In addition to enabling hair-to-hair bonding, our study also showcases the efficacy of l-VATA in facilitating hair-to-skin adhesion. The results illustrate how the lower viscosity of l-VATA can be exploited for a wide range of industrial and cosmetic applications, allowing the formulation of thin, uniform adhesive layers, something unachievable with the dense, viscous VATA glue. Thus, this study highlights the importance of investigating the top dilute phase of coacervates, shedding light on an area often underestimated compared to the bottom dense phase reported in prevalent coacervate studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA