Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 135(11): 1427-1444, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34061176

RESUMEN

We aimed to investigate the role of cMet agonistic antibody (cMet Ab) in preventing kidney fibrosis during acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Additionally, we explored the effect of cMet Ab on TGF-ß1/Smad pathway during the pathogenesis of kidney fibrosis. A unilateral ischemia-reperfusion injury (UIRI) mouse model was established to induce AKI-to-CKD transition. Furthermore, we incubated human proximal tubular epithelial cells (hPTECs) under hypoxic conditions as in vitro model of kidney fibrosis. We analyzed the soluble plasma cMet level in patients with AKI requiring dialysis. Patients who did not recover kidney function and progressed to CKD presented a higher increase in the cMet level. The kidneys of mice treated with cMet Ab showed fewer contractions and weighed more than the controls. The mice in the cMet Ab-treated group showed reduced fibrosis and significantly decreased expression of fibronectin and α-smooth muscle actin. cMet Ab treatment decreased inflammatory markers (MCP-1, TNF-α, and IL-1ß) expression, reduced Smurf1 and Smad2/3 level, and increased Smad7 expressions. cMet Ab treatment increased cMet expression and reduced the hypoxia-induced increase in collagen-1 and ICAM-1 expression, thereby reducing apoptosis in the in vitro cell model. After cMet Ab treatment, hypoxia-induced expression of Smurf1, Smad2/3, and TGF-ß1 was reduced, and suppressed Smad7 was activated. Down-regulation of Smurf1 resulted in suppression of hypoxia-induced fibronectin expression, whereas treatment with cMet Ab showed synergistic effects. cMet Ab can successfully prevent fibrosis response in UIRI models of kidney fibrosis by decreasing inflammatory response and inhibiting the TGF-ß1/Smad pathway.


Asunto(s)
Lesión Renal Aguda/patología , Insuficiencia Renal Crónica/metabolismo , Proteína smad7/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Fibrosis/patología , Humanos , Riñón/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Crecimiento Transformador beta/metabolismo
2.
Biomedicines ; 10(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35203459

RESUMEN

Vagus nerve stimulation (VNS) is considered a potential method for anti-inflammation due to the involvement of the VN in the cholinergic anti-inflammatory pathway (CAP) formation of a connection between the central nervous system and peripheral immune cells that help relieve inflammation. However, whether a non-invasive transcutaneous auricular VNS (taVNS) modulates the inflammation levels via altering the parameter of taVNS is poorly understood. This study aimed to determine the differential inhibitory effects of taVNS on lipopolysaccharide (LPS)-induced systemic inflammation using electrical stimulation parameters such as pulse frequency and time. The taVNS-promoted CAP activity significantly recovered LPS-induced tissue injuries (lung, spleen, and intestine) and decreased inflammatory cytokine levels and tissue-infiltrated immune cells. Interestingly, the anti-inflammatory capacity of taVNS with 15 Hz was much higher than that of taVNS with 25 Hz. When a cytokine array was used to investigate the changes of inflammation and immune response-related cytokines/chemokines expression in taVNS with 15 Hz or 25 Hz treatment in LPS-induced endotoxemia in mice, most of the expression of cytokines/chemokines associated with pro-inflammation was severely decreased in taVNS with 15 Hz compared to 25 Hz. This study demonstrated that the taVNS parameter could differentially modulate the inflammation levels of animals, suggesting the importance of taVNS parameter selection for use in feasible interventions for acute inflammation treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA