Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 49(1): e12867, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36536486

RESUMEN

AIMS: CYP2C19 transgenic mouse expresses the human CYP2C19 gene in the liver and developing brain, and it exhibits altered neurodevelopment associated with impairments in emotionality and locomotion. Because the validation of new animal models is essential for the understanding of the aetiology and pathophysiology of movement disorders, the objective was to characterise motoric phenotype in CYP2C19 transgenic mice and to investigate its validity as a new animal model of ataxia. METHODS: The rotarod, paw-print and beam-walking tests were utilised to characterise the motoric phenotype. The volumes of 20 brain regions in CYP2C19 transgenic and wild-type mice were quantified by 9.4T gadolinium-enhanced post-mortem structural neuroimaging. Antioxidative enzymatic activity was quantified biochemically. Dopaminergic alterations were characterised by chromatographic quantification of concentrations of dopamine and its metabolites and by subsequent immunohistochemical analyses. The beam-walking test was repeated after the treatment with dopamine receptor antagonists ecopipam and raclopride. RESULTS: CYP2C19 transgenic mice exhibit abnormal, unilateral ataxia-like gait, clasping reflex and 5.6-fold more paw-slips in the beam-walking test; the motoric phenotype was more pronounced in youth. Transgenic mice exhibited a profound reduction of 12% in cerebellar volume and a moderate reduction of 4% in hippocampal volume; both regions exhibited an increased antioxidative enzyme activity. CYP2C19 mice were hyperdopaminergic; however, the motoric impairment was not ameliorated by dopamine receptor antagonists, and there was no alteration in the number of midbrain dopaminergic neurons in CYP2C19 mice. CONCLUSIONS: Humanised CYP2C19 transgenic mice exhibit altered gait and functional motoric impairments; this phenotype is likely caused by an aberrant cerebellar development.


Asunto(s)
Enfermedades Cerebelosas , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Adolescente , Ratones Transgénicos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ataxia/metabolismo , Ataxia/patología , Cerebelo/patología , Enfermedades Cerebelosas/patología , Enfermedades Neurodegenerativas/patología , Atrofia/patología , Modelos Animales de Enfermedad
2.
J Clin Psychopharmacol ; 42(4): 396-399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35703273

RESUMEN

PURPOSE: The antidepressant vortioxetine is mainly metabolized by the polymorphic enzyme CYP2D6. The aim of this study was to investigate the absolute serum concentrations of vortioxetine and frequency of switching to an alternative antidepressant in relation to CYP2D6 genotype in a naturalistic patient population. METHODS: The analyses included data from 640 CYP2D6 -genotyped patients treated with vortioxetine from a Norwegian therapeutic drug monitoring database. Serum concentration of vortioxetine was determined using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry, whereas longitudinal reviews of therapeutic drug monitoring profiles were performed to identify cases of patients switching from vortioxetine to an alternative antidepressant. RESULTS: Compared with CYP2D6 normal metabolizers (n = 342), the median vortioxetine serum concentration (ng/mL) was 2.1-fold ( P < 0.001) increased in poor metabolizers (PMs) (n = 48), 1.5-fold ( P < 0.001) increased in intermediate metabolizers (n = 238), and not significantly changed in ultrarapid metabolizers (n = 12). Compared with CYP2D6 normal metabolizers, treatment switch from vortioxetine to alternative antidepressants was 5.1-fold (95% confidence interval, 1.6-15.4, P = 0.003) more frequent among PMs. The prescribed doses did not differ significantly between the subgroups ( P = 0.26). A possible explanation for the increased frequency of treatment switch among PMs is that concentration-dependent adverse events were more frequent in this group because of increased drug exposure. CONCLUSIONS: This naturalistic study provides novel data on the association between CYP2D6 genotype and treatment switch of vortioxetine, which likely reflects the significant effect of CYP2D6 genotype on vortioxetine exposure.


Asunto(s)
Citocromo P-450 CYP2D6 , Monitoreo de Drogas , Antidepresivos/efectos adversos , Estudios de Cohortes , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genotipo , Humanos , Estudios Retrospectivos , Cambio de Tratamiento , Vortioxetina
3.
J Neurosci ; 38(7): 1662-1676, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29321139

RESUMEN

The embryonic formation of midbrain dopaminergic (mDA) neurons in vivo provides critical guidelines for the in vitro differentiation of mDA neurons from stem cells, which are currently being developed for Parkinson's disease cell replacement therapy. Bone morphogenetic protein (BMP)/SMAD inhibition is routinely used during early steps of stem cell differentiation protocols, including for the generation of mDA neurons. However, the function of the BMP/SMAD pathway for in vivo specification of mammalian mDA neurons is virtually unknown. Here, we report that BMP5/7-deficient mice (Bmp5-/-; Bmp7-/-) lack mDA neurons due to reduced neurogenesis in the mDA progenitor domain. As molecular mechanisms accounting for these alterations in Bmp5-/-; Bmp7-/- mutants, we have identified expression changes of the BMP/SMAD target genes MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog). Conditionally inactivating SMAD1 in neural stem cells of mice in vivo (Smad1Nes) hampered the differentiation of progenitor cells into mDA neurons by preventing cell cycle exit, especially of TH+SOX6+ (tyrosine hydroxylase, SRY-box 6) and TH+GIRK2+ (potassium voltage-gated channel subfamily-J member-6) substantia nigra neurons. BMP5/7 robustly increased the in vitro differentiation of human induced pluripotent stem cells and induced neural stem cells to mDA neurons by up to threefold. In conclusion, we have identified BMP/SMAD signaling as a novel critical pathway orchestrating essential steps of mammalian mDA neurogenesis in vivo that balances progenitor proliferation and differentiation. Moreover, we demonstrate the potential of BMPs to improve the generation of stem-cell-derived mDA neurons in vitro, highlighting the importance of sequential BMP/SMAD inhibition and activation in this process.SIGNIFICANCE STATEMENT We identify bone morphogenetic protein (BMP)/SMAD signaling as a novel essential pathway regulating the development of mammalian midbrain dopaminergic (mDA) neurons in vivo and provide insights into the molecular mechanisms of this process. BMP5/7 regulate MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog) expression to direct mDA neurogenesis. Moreover, the BMP signaling component SMAD1 controls the differentiation of mDA progenitors, particularly to substantia nigra neurons, by directing their cell cycle exit. Importantly, BMP5/7 increase robustly the differentiation of human induced pluripotent and induced neural stem cells to mDA neurons. BMP/SMAD are routinely inhibited in initial stages of stem cell differentiation protocols currently being developed for Parkinson's disease cell replacement therapies. Therefore, our findings on opposing roles of the BMP/SMAD pathway during in vitro mDA neurogenesis might improve these procedures significantly.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Neuronas Dopaminérgicas/fisiología , Mesencéfalo/fisiología , Células-Madre Neurales , Neurogénesis/fisiología , Células Madre Pluripotentes , Transducción de Señal/fisiología , Proteínas Smad/fisiología , Animales , Proteína Morfogenética Ósea 5/genética , Proteína Morfogenética Ósea 5/metabolismo , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/metabolismo , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Mesencéfalo/citología , Ratones , Ratones Noqueados , Proteína Smad1/genética , Proteína Smad1/metabolismo
4.
Br J Clin Pharmacol ; 85(1): 194-201, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312494

RESUMEN

AIMS: CYP2D6*9, CYP2D6*10 and CYP2D6*41 are the most frequent reduced-function CYP2D6 alleles in Caucasians. Despite lacking in vivo evidence, they are collectively classified with an enzyme activity score of 0.5. Thus, the aim of this study was to compare the functional impact of CYP2D6*9, CYP2D6*10 and CYP2D6*41 on CYP2D6 metabolism in a large patient population. METHODS: A total of 1003 patients (mainly Caucasians) with data on CYP2D6 genotype and serum concentrations of venlafaxine and metabolites were included from a therapeutic drug monitoring service in Oslo, Norway. The O-desmethyl-to-N-desmethyl-venlafaxine metabolic ratio (MR) was applied as CYP2D6 biomarker and compared (Mann-Whitney) between carriers of CYP2D6*9-10 (merged) and CYP2D6*41, either combined with CYP2D6*1 or non-coding (null) alleles. MR subgroup estimates were obtained by multiple linear regression for calculations of CYP2D6*9-10 and CYP2D6*41 activity scores. RESULTS: MR was significantly lower in carriers of CYP2D6*41 than CYP2D6*9-10 (P < 0.002). The majority of CYP2D6*41/null carriers (86.7%) had MR in the observed range of CYP2D6null/null carriers compared with the minority of CYP2D6*9-10/null carriers (17.4%). CYP2D6 genotype explained 60.7% of MR variability in the multivariate analysis providing subgroup estimates of 9.54 (95% CI; 7.45-12.20), 3.55 (2.06-6.10), 1.33 (0.87-2.05) and 0.47 (0.35-0.61) in carriers of CYP2D6*1/null (n = 269), CYP2D6*9-10/null (n = 17), CYP2D6*41/null (n = 30) and CYP2D6null/null (n = 95), respectively. Based on these estimates, the calculated activity score of CYP2D6*41 was 0.095 compared to 0.34 for CYP2D6*9-10. CONCLUSIONS: CYP2D6 metabolism measured as the O/N-desmethylvenlafaxine ratio is significantly lower in Scandinavian carriers of CYP2D6*41 vs. CYP2D6*9-10. Thus, these alleles should be differentiated when classifying CYP2D6 phenotype from genotype.


Asunto(s)
Antidepresivos de Segunda Generación/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Monitoreo de Drogas/estadística & datos numéricos , Clorhidrato de Venlafaxina/farmacocinética , Anciano , Alelos , Antidepresivos de Segunda Generación/administración & dosificación , Antidepresivos de Segunda Generación/sangre , Ciclohexanoles/administración & dosificación , Ciclohexanoles/sangre , Ciclohexanoles/farmacocinética , Citocromo P-450 CYP2D6/genética , Succinato de Desvenlafaxina/administración & dosificación , Succinato de Desvenlafaxina/sangre , Succinato de Desvenlafaxina/farmacocinética , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Noruega , Estudios Retrospectivos , Clorhidrato de Venlafaxina/administración & dosificación , Clorhidrato de Venlafaxina/sangre
5.
Clin Transl Sci ; 16(1): 62-72, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152308

RESUMEN

Clinical response of clozapine is closely associated with serum concentration. Although tobacco smoking is the key environmental factor underlying interindividual variability in clozapine metabolism, recent genome-wide studies suggest that CYP1A and NFIB genetic variants may also be of significant importance, but their quantitative impact is unclear. We investigated the effects of the rs2472297 C>T (CYP1A) and rs28379954 T>C (NFIB) polymorphisms on serum concentrations in smokers and nonsmokers. The study retrospectively included 526 patients with known smoking habits (63.7% smokers) from a therapeutic drug monitoring service in Norway. Clozapine dose-adjusted concentrations (C/D) and patient proportions with subtherapeutic levels (<1070 nmol/L) were compared between CYP1A/NFIB variant allele carriers and homozygous wild-type carriers (noncarriers), in both smokers and nonsmokers. Clozapine C/D was reduced in patients carrying CYP1A-T and NFIB-C variants versus noncarriers, both among smokers (-48%; p < 0.0001) and nonsmokers (-35%; p = 0.028). Patients who smoke carrying CYP1A-T and NFIB-C variants had a 66% reduction in clozapine C/D versus nonsmoking noncarriers (p < 0.0001). The patient proportion with subtherapeutic levels was 2.9-fold higher in patients who smoke carrying NFIB-C and CYP1A-T variants versus nonsmoking noncarriers (p < 0.0001). In conclusion, CYP1A and NFIB variants have significant and additive impact on clozapine dose requirements for reaching target serum concentrations. Patients who smoke carrying the studied CYP1A and NFIB variants, comprising 2.5% of the study population, may need threefold higher doses to prevent risk of clozapine undertreatment. The results suggest that pre-emptive genotyping of NFIB and CYP1A may be utilized to guide clozapine dosing and improve clinical outcomes in patients with treatment-resistant schizophrenia.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/uso terapéutico , Antipsicóticos/uso terapéutico , Estudios Retrospectivos , Esquizofrenia/tratamiento farmacológico , Estudios de Cohortes , Fumar/efectos adversos , Fumar/genética , Factores de Transcripción NFI
6.
Clin Transl Sci ; 15(9): 2135-2145, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35668575

RESUMEN

Sertraline is a commonly used SSRI antidepressant drug, metabolized by CYP2C19 and CYP2B6, that exhibits a substantial interindividual variation in clinical response, of which only a part can be attributed to known genetic variants. In the current study we have examined the role of a newly discovered ultrarapid CYP2C:TG haplotype and CYP2B6 variants in order to identify the possible missing heritability for such variation in sertraline response in a large patient population (n = 840). Compared to the reference group (CYP2C19*1/*1, n = 160), sertraline exposure was increased by 128% in CYP2C19 PMs (n = 29, p < 0.001) but decreased by about 20% in CYP2C19 ultrarapid metabolizers (Ums) (homozygous carriers of CYP2C19*17 and/or CYP2C:TG haplotype) with the diplotypes CYP2C19*17/*17, CYP2C:TG/TG, or CYP2C19*17/CYP2C:TG (n = 135, p < 0.003, p = 0.022, p < 0.003, respectively). Interestingly, in patients carrying the increased function CYP2B6*4 allele, and also carrying the CYP2C19*17 and CYP2C:TG alleles (n = 10), sertraline exposure was 35.4% lower compared to the reference group, whereas in subjects being poor metabolizers (PM) in both the CYP2C19 and CYP2B6 gene, the sertraline concentrations were raised by 189%. In summary, the CYP2C19 variants including the CYP2C:TG haplotype had a significant impact on sertraline metabolism, as well as the CYP2B6*4, *6, and *9 alleles. Knowing the CYP2B6 and CYP2C19 genotype, including the CYP2C:TG haplotype status, can prospectively be useful to clinicians in making more appropriate sertraline dosing decisions.


Asunto(s)
Sertralina , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C19/genética , Sistema Enzimático del Citocromo P-450 , Genotipo , Haplotipos , Humanos
7.
Cells ; 11(10)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626634

RESUMEN

The in vivo-relevant phenotype of 3D liver spheroids allows for long-term studies of, e.g., novel mechanisms of chronic drug-induced liver toxicity. Using this system, we present a novel drug-induced stress response in human and murine hepatocyte spheroids, wherein long slender filaments form after chronic treatment with four different drugs, of which three are PPARα antagonists. The morphology of the thorns varies between donors and the compounds used. They are mainly composed of diverse protein fibres, which are glycosylated. Their formation is inhibited by treatment with fatty acids or antioxidants. Treatment of mice with GW6471 revealed changes in gene and protein expression, such as those in the spheroids. In addition, similar changes in keratin expression were seen following the treatment of hepatotoxic drugs, including aflatoxin B1, paracetamol, chlorpromazine, cyclosporine, and ketoconazole. We suggest that thorn formation may be indicative of hepatocyte metaplasia in response to toxicity and that more focus should be placed on alterations of ECM-derived protein expression as biomarkers of liver disease and chronic drug-induced hepatotoxicity, changes that can be studied in stable in vivo-like hepatic cell systems, such as the spheroids.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Esferoides Celulares , Acetaminofén , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/metabolismo , Humanos , Ratones
8.
Psychiatry Res ; 312: 114535, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398660

RESUMEN

The inter-individual variability in CYP2C19-mediated metabolism may affect the antidepressant treatment. The aim of this study is to evaluate differences in antidepressant efficacy and tolerability between different CYP2C19 metabolizer categories in inpatients suffering from major depressive disorder. The cohort was divided into experimental groups based on CYP2C19 genotype and it contained 24 slow (SMs), 41 normal (NMs), and 37 fast metabolizers (FMs). Efficacy and tolerability were assessed at baseline, and after two and four weeks as a follow-up. The primary efficacy measurement was the change from baseline in Hamilton's Depression Rating Scale (HAMD), while the primary tolerability measurement was the Toronto Side-Effects Scale (TSES) intensity scores at the last visit. The reduction in HAMD score was 36% less pronounced and response rate was exceedingly less prevalent (75% lower) in SMs, compared with NMs. The TSES intensity score was increased in SMs, compared with NMs, by 43% for central nervous system and by 22% for gastrointestinal adverse drug reactions. No significant differences in measured parameters were observed between NMs and FMs. Compared with NM and RM, lower antidepressant efficacy and tolerability was observed in SMs; this association is likely connected with the lower SM capacity to metabolize antidepressant drugs.


Asunto(s)
Trastorno Depresivo Mayor , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Antidepresivos/efectos adversos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Trastorno Depresivo Mayor/inducido químicamente , Trastorno Depresivo Mayor/tratamiento farmacológico , Genotipo , Humanos , Fenotipo
9.
Clin Pharmacol Ther ; 111(5): 1165-1174, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253216

RESUMEN

The genetic background for interindividual variability of the polymorphic CYP2D6 enzyme activity remains incompletely understood and the role of NFIB genetic polymorphism for this variability was evaluated in this translational study. We investigated the effect of NFIB expression in vitro using 3D liver spheroids, Huh7 cells, and the influence of the NFIB polymorphism on metabolism of risperidone in patients in vivo. We found that NFIB regulates several important pharmacogenes, including CYP2D6. NFIB inhibited CYP2D6 gene expression in Huh7 cells and NFIB expression in livers was predominantly nuclear and reduced at the mRNA and protein level in carriers of the NFIB rs28379954 T>C allele. Based on 604 risperidone treated patients genotyped for CYP2D6 and NFIB, we found that the rate of risperidone hydroxylation was elevated in NFIB rs28379954 T>C carriers among CYP2D6 normal metabolizers, resulting in a similar rate of drug metabolism to what is observed in CYP2D6 ultrarapid metabolizers, with no such effect observed in CYP2D6 poor metabolizers lacking functional enzyme. The results indicate that NFIB constitutes a novel nuclear factor in the regulation of cytochrome P450 genes, and that its polymorphism is a predictor for the rate of CYP2D6 dependent drug metabolism in vivo.


Asunto(s)
Antipsicóticos , Risperidona , Antipsicóticos/uso terapéutico , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genotipo , Humanos , Hígado/metabolismo , Factores de Transcripción NFI/genética , Risperidona/uso terapéutico
10.
Front Pharmacol ; 12: 650750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967790

RESUMEN

Genetic differences in cytochrome P450 (CYP)-mediated metabolism have been known for several decades. The clinically most important polymorphic CYP enzyme is CYP2D6, which plays a key role in the metabolism of many antidepressants and antipsychotics, along with a range of non-psychiatric medications. Dose individualization based on CYP2D6 genotype to improve the effect and safety of drug treatment has been an ambition for a long time. Clinical use of CYP2D6 genotyping is steadily increasing; however, for pre-emptive genotyping to be successful in predicting individual dose requirements, high precision of genotype-to-phenotype translations are required. Recently, guidelines for assigning CYP2D6 enzyme activity scores of CYP2D6 variant alleles, and subsequent diplotype-to-phenotype translations, were published by the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group. Consensus on assigning activity scores of CYP2D6 variant alleles and translating diplotype scores into CYP2D6 poor, intermediate, normal, or ultrarapid metabolizer groups were obtained by consulting 37 international experts. While assigning enzyme activities of non-functional (score 0) and fully functional (score 1) alleles are straightforward, reduced function variant alleles are more complex. In this article, we present data showing that the assigned activity scores of reduced function variant alleles in current guidelines are not of sufficient precision; especially not for CYP2D6*41, where the guideline activity score is 0.5 compared to 0.05-0.15 in pharmacogenetic studies. Due to these discrepancies, CYP2D6 genotypes with similar guidelinediplotype scores exhibit substantial differences in CYP2D6 metabolizer phenotypes. Thus, it is important that the guidelines are updated to be valid in predicting individual dose requirements of psychiatric drugs and others metabolized by CYP2D6.

11.
Clin Pharmacol Ther ; 110(3): 750-758, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33792048

RESUMEN

The metabolic activity of the polymorphic CYP2D6 enzyme is dependent on the CYP2D6 genotype; however, the guidelines for translating the genotype into phenotype, which are of relevance for adequate drug dose personalization, are ambiguous. In the present study, retrospective therapeutic drug monitoring data from 4,700 CYP2D6 genotyped patients treated with risperidone, venlafaxine, and/or aripiprazole were analyzed to quantify the effect of CYP2D6 genotype on the CYP2D6 metabolic activities, as measured by metabolic ratios of these substrates. The patients were categorized into diplotypes based on the presence of normal function (CYP2D6Norm), nonfunctional (CYP2D6Nonf), and decreased function (CYP2D6Decr; i.e., CYP2D6*9, CYP2D6*10, and CYP2D6*41) CYP2D6 haplotypes. Significant correlations between the metabolic ratios were observed in patients (n = 77-103) cotreated with risperidone and venlafaxine, risperidone and aripiprazole, or venlafaxine and aripiprazole (ρ = 0.874, 0.785, and 0.644, respectively; P < 0.001 for all). Relative metabolic CYP2D6 diplotype activity was calculated based on that the metabolic ratios, where median values for CYP2D6Nonf/Nonf and CYP2D6Norm/Norm subgroups were set to 0% and 100%, respectively. The relative CYP2D6 activities were: 7.0% for CYP2D6Nonf/*41, 16.7% for CYP2D6Nonf/*9-10, 13.2% for CYP2D6*41/*41, 24.9% for CYP2D6*41/*9-10, 33.1% for CYP2D6*9-10/*9-10, 41.3% for CYP2D6Nonf/Norm, 55.0% for CYP2D6*41/Norm, 58.9% for CYP2D6*9-10/Norm, and 149.2% for CYP2D6Norm/Normx2. Compared with the CYP2D6Norm alleles, the activity scores of CYP2D6*41 and CYP2D6*9-10 alleles were estimated to be one sixth and one third, respectively. The results of this highly powered study provide a solid basis for the translation of the CYP2D6 genotype into a drug metabolic phenotype.


Asunto(s)
Antipsicóticos/uso terapéutico , Aripiprazol/uso terapéutico , Citocromo P-450 CYP2D6/genética , Haplotipos/genética , Risperidona/uso terapéutico , Clorhidrato de Venlafaxina/uso terapéutico , Adulto , Alelos , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos
12.
Clin Pharmacol Ther ; 110(3): 786-793, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33759177

RESUMEN

Escitalopram is one of the most commonly used antidepressant drugs but exhibits a substantial interindividual variation in clinical response. A key factor underlying response differences is the polymorphic nature of the CYP2C19 gene encoding the major enzyme responsible for escitalopram metabolism. Although pre-emptive CYP2C19 genotyping may improve escitalopram treatment outcome by dose individualization, much of the interindividual variability cannot be assigned to the currently known CYP2C19 gene variants. The aim of the present study was to search for novel CYP2C-haplotypes for better genetic prediction of escitalopram metabolism. First, the CYP2C18/CYP2C19 locus was sequenced from gDNA obtained from 24 patients previously genotyped as CYP2C19*1/*1 showing consistently low serum concentrations of escitalopram (< 25 nM/10 mg). Three new haplotypes of the CYP2C locus (CYP2C:TG, CYP2C:TA, and CYP2C:CG) were here identified, and their functional roles were evaluated using gDNA from 875 previously genotyped escitalopram-treated patients. The CYP2C:CG and CYP2C:TA haplotypes had no significant impact on escitalopram concentration. Based on the estimated effects of the novel CYP2C-haplotypes on escitalopram exposure, the predicted serum concentrations of escitalopram in homozygous CYP2C:TG and CYP2C19*17 carriers were 24.8% and 17.3% lower compared with the baseline (CYP2C:CG and CYP2C:TA), respectively. In conclusion, a novel CYP2C-haplotype defined by rs2860840T and rs11188059G associated with ultrarapid metabolism of escitalopram was identified. Further studies should clarify the genetic basis for the enhanced escitalopram metabolism and the impact of the CYP2C:TG haplotype on the metabolism of other CYP2C19 substrates like omeprazole, voriconazole, and clopidogrel.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Citalopram/metabolismo , Citocromo P-450 CYP2C19/genética , Haplotipos/genética , Adulto , Femenino , Genotipo , Homocigoto , Humanos , Masculino , Persona de Mediana Edad
13.
Schizophr Res ; 228: 590-596, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221147

RESUMEN

BACKGROUND: Nonadherence to antipsychotics may cause relapse and hospitalizations in patients with psychotic disorders. The purpose was to quantify and compare the outpatient's nonadherence rates of atypical antipsychotics by objective detection in blood samples. METHODS: Totally, 13,217 outpatients with therapeutic drug monitoring (TDM) data of atypical antipsychotics were included. An event of complete nonadherence was defined as an occurrence of undetectable level of a prescribed antipsychotic in the blood sample submitted for TDM. Patients with such an event(s) were defined as nonadherent of the respective drug treatment (outcome). The rates of nonadherence patients were compared between the drugs by logistic regression. RESULTS: In the study population, 70.2% of the patients were prescribed doses compliant with a schizophrenia diagnosis. The mean olanzapine equivalent dose in the population was 13.4 mg (95% confidence interval (CI): 13.3, 13.6). The frequency of nonadherence patients, regardless of drug, was 3.7% (CI: 3.4-4.0). The nonadherence patient rate was lowest in clozapine-treated patients (2.2%; CI: 1.5-2.8), followed by aripiprazole (2.3%; 1.7-2.8), risperidone (2.4%; 1.6-3.0), quetiapine (2.8%; 2.3-3.2) and olanzapine (4.9%; 4.1-5.3). Users of olanzapine had significantly higher risk of complete nonadherence (Odds ratio: 1.9; CI: 1.6-2.3, p < 0.001) compared to patients treated with other antipsychotics as a group. CONCLUSIONS: In this study, complete nonadherence of atypical antipsychotics, measured as undetectable blood level, was disclosed for ~5% of outpatients with psychotic disorders. The rate of complete nonadherence was significantly higher during olanzapine treatment compared to other atypical antipsychotics. Further studies should investigate if this reflects drug differences in tolerability or other causal relationships.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Antipsicóticos/uso terapéutico , Benzodiazepinas/uso terapéutico , Humanos , Pacientes Ambulatorios , Trastornos Psicóticos/tratamiento farmacológico , Fumarato de Quetiapina/uso terapéutico , Risperidona/uso terapéutico
14.
JAMA Psychiatry ; 78(3): 270-280, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33237321

RESUMEN

Importance: Precise estimation of the drug metabolism capacity for individual patients is crucial for adequate dose personalization. Objective: To quantify the difference in the antipsychotic and antidepressant exposure among patients with genetically associated CYP2C19 and CYP2D6 poor (PM), intermediate (IM), and normal (NM) metabolizers. Data Sources: PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990, to June 30, 2020, with no language restrictions. Study Selection: Two independent reviewers performed study screening and assessed the following inclusion criteria: (1) appropriate CYP2C19 or CYP2D6 genotyping was performed, (2) genotype-based classification into CYP2C19 or CYP2D6 NM, IM, and PM categories was possible, and (3) 3 patients per metabolizer category were available. Data Extraction and Synthesis: The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed for extracting data and quality, validity, and risk of bias assessments. A fixed-effects model was used for pooling the effect sizes of the included studies. Main Outcomes and Measures: Drug exposure was measured as (1) dose-normalized area under the plasma level (time) curve, (2) dose-normalized steady-state plasma level, or (3) reciprocal apparent total drug clearance. The ratio of means (RoM) was calculated by dividing the mean drug exposure for PM, IM, or pooled PM plus IM categories by the mean drug exposure for the NM category. Results: Based on the data derived from 94 unique studies and 8379 unique individuals, the most profound differences were observed in the patients treated with aripiprazole (CYP2D6 PM plus IM vs NM RoM, 1.48; 95% CI, 1.41-1.57; 12 studies; 1038 patients), haloperidol lactate (CYP2D6 PM vs NM RoM, 1.68; 95% CI, 1.40-2.02; 9 studies; 423 patients), risperidone (CYP2D6 PM plus IM vs NM RoM, 1.36; 95% CI, 1.28-1.44; 23 studies; 1492 patients), escitalopram oxalate (CYP2C19 PM vs NM, RoM, 2.63; 95% CI, 2.40-2.89; 4 studies; 1262 patients), and sertraline hydrochloride (CYP2C19 IM vs NM RoM, 1.38; 95% CI, 1.27-1.51; 3 studies; 917 patients). Exposure differences were also observed for clozapine, quetiapine fumarate, amitriptyline hydrochloride, mirtazapine, nortriptyline hydrochloride, fluoxetine hydrochloride, fluvoxamine maleate, paroxetine hydrochloride, and venlafaxine hydrochloride; however, these differences were marginal, ambiguous, or based on less than 3 independent studies. Conclusions and Relevance: In this systematic review and meta-analysis, the association between CYP2C19/CYP2D6 genotype and drug levels of several psychiatric drugs was quantified with sufficient precision as to be useful as a scientific foundation for CYP2D6/CYP2C19 genotype-based dosing recommendations.


Asunto(s)
Antidepresivos/farmacocinética , Antipsicóticos/farmacocinética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Variantes Farmacogenómicas/genética , Antidepresivos/administración & dosificación , Antipsicóticos/administración & dosificación , Humanos
15.
Front Psychiatry ; 11: 94, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226396

RESUMEN

In recent decades, very few new psychiatric drugs have entered the market. Thus, improvement in the use of antidepressant and antipsychotic therapy has to focus mainly on enhanced and more personalized treatment with the currently available drugs. One important aspect of such individualization is emphasizing interindividual differences in genes relevant to treatment, an area that can be termed neuropsychopharmacogenomics. Here, we review previous efforts to identify such critical genetic variants and summarize the results obtained to date. We conclude that most clinically relevant genetic variation is connected to phase I drug metabolism, in particular to genetic polymorphism of CYP2C19 and CYP2D6. To further improve individualized pharmacotherapy, there is a need to take both common and rare relevant mutations into consideration; we discuss the present and future possibilities of using whole genome sequencing to identify patient-specific genetic variation relevant to treatment in psychiatry. Translation of pharmacogenomic knowledge into clinical practice can be considered for specific drugs, but this requires education of clinicians, instructive guidelines, as well as full attention to polypharmacy and other clinically relevant factors. Recent large patient studies (n > 1,000) have replicated previous findings and produced robust evidence warranting the clinical utility of relevant genetic biomarkers. To further judge the clinical and financial benefits of preemptive genotyping in psychiatry, large prospective randomized trials are needed to quantify the value of genetic-based patient stratification in neuropsychopharmacotherapy and to demonstrate the cost-effectiveness of such interventions.

16.
Eur Neuropsychopharmacol ; 37: 64-69, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32595082

RESUMEN

Nonadherence to oral antipsychotic drugs is a major issue in clinical psychiatry giving rise to treatment failure. Further, polypharmacy is common in the treatment of psychotic disorders due to insufficient treatment effect during monotherapy. As a potential circuit problem, we hypothesized that antipsychotic polypharmacy is associated with increased risk of nonadherence. To investigate this, in terms of 'complete' nonadherence, the rates of undetectable serum drug concentrations during prescribing of doses used in psychotic disorders were compared during antipsychotic 'monotherapy' vs 'polypharmacy' treatment using therapeutic drug monitoring (TDM) data of 24,239 patients. A complete nonadherence patient was objectively defined as the detection of at least one event of undetectable serum concentration of a prescribed antipsychotic drug. The rate of complete nonadherence patients was compared between antipsychotic monotherapy and polypharmacy by multivariate logistic regression analyses. The overall rate of complete nonadherence in the population was 6.8% (n = 1,644; 95%CI: 6.5-7.1). Compared to monotherapy patients, the rate of nonadherence increased significantly with the number of co-prescribed antipsychotic drugs. After adjusting for sex (p = 0.091) and age (p < 0.001) as covariates, the rates of nonadherence vs monotherapy were 1.69-fold (95% CI: 1.48-1.92; p < 0.001) for two, 2.60-fold (95% CI: 1.88-3.59; p < 0.001) for three, and 3.54-fold (95% CI: 1.46-8.58; p = 0.005) for four or more co-prescribed antipsychotics, respectively. The present naturalistic study shows that antipsychotic polypharmacy significantly increases the rate of complete nonadherence, which is positively correlated with increasing number of concurrently used antipsychotic drugs. Thus, the intended clinical benefit of combining oral antipsychotic drugs may probably be reduced by increased nonadherence.


Asunto(s)
Antipsicóticos/administración & dosificación , Antipsicóticos/sangre , Monitoreo de Drogas/métodos , Cumplimiento de la Medicación/psicología , Polifarmacia , Administración Oral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cromatografía Liquida/métodos , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , Noruega/epidemiología , Esquizofrenia/sangre , Esquizofrenia/tratamiento farmacológico , Psicología del Esquizofrénico , Adulto Joven
17.
Neuropsychopharmacology ; 45(3): 570-576, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31649299

RESUMEN

Sertraline is an (SSRI-)antidepressant metabolized by the polymorphic CYP2C19 enzyme. The aim of this study was to investigate the impact of CYP2C19 genotype on the serum concentrations of sertraline in a large patient population. Second, the proportions of patients in the various CYP2C19 genotype-defined subgroups obtaining serum concentrations outside the therapeutic range of sertraline were assessed. A total of 2190 sertraline serum concentration measurements from 1202 patients were included retrospectively from the drug monitoring database at Diakonhjemmet Hospital in Oslo. The patients were divided into CYP2C19 genotype-predicted phenotype subgroups, i.e. normal (NMs), ultra rapid (UMs), intermediate (IMs), and poor metabolisers (PMs). The differences in dose-harmonized serum concentrations of sertraline and N-desmethylsertraline-to-sertraline metabolic ratio were compared between the subgroups, with CYP2C19 NMs set as reference. The patient proportions outside the therapeutic concentration range were also compared between the subgroups with NMs defined as reference. Compared with the CYP2C19 NMs, the sertraline serum concentration was increased 1.38-fold (95% CI 1.26-1.50) and 2.68-fold (95% CI 2.16-3.31) in CYP2C19 IMs and PMs, respectively (p < 0.001), while only a marginally lower serum concentration (-10%) was observed in CYP2C19 UMs (p = 0.012). The odds ratio for having a sertraline concentration above the therapeutic reference range was 1.97 (95% CI 1.21-3.21, p = 0.064) and 8.69 (95% CI 3.88-19.19, p < 0.001) higher for IMs and PMs vs. NMs, respectively. CYP2C19 IMs and PMs obtain significantly higher serum concentrations of sertraline than NMs. Based on the relative differences in serum concentrations compared to NMs, dose reductions of 60% and 25% should be considered in PMs and IMs, respectively, to reduce the risk of sertraline overexposure in these patients.


Asunto(s)
Antidepresivos/sangre , Citocromo P-450 CYP2C19/genética , Genotipo , Sertralina/sangre , Adulto , Anciano , Antidepresivos/uso terapéutico , Depresión/sangre , Depresión/tratamiento farmacológico , Depresión/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Noruega/epidemiología , Estudios Retrospectivos , Países Escandinavos y Nórdicos/epidemiología , Inhibidores Selectivos de la Recaptación de Serotonina/sangre , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Sertralina/uso terapéutico
18.
Lancet Psychiatry ; 6(5): 418-426, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31000417

RESUMEN

BACKGROUND: The polymorphic CYP2D6 enzyme metabolises the antipsychotic drugs risperidone and aripiprazole to their active metabolites, 9OH-risperidone and dehydroaripiprazole. The aim of this study was to quantify the effect of CYP2D6 genetic variability on risperidone and aripiprazole exposure and treatment in a large patient population. METHODS: We retrospectively obtained patient data from a routine therapeutic drug monitoring database at the Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway, between Jan 1, 2005, and Oct 15, 2018. Individuals included in our analyses were CYP2D6-genotyped patients treated with risperidone or aripiprazole. Inclusion criteria for measurement of pharmacokinetic parameters (drug and metabolite serum concentrations) were oral administration of risperidone or aripiprazole, information known about prescribed daily dose and comedications, and aged older than 18 years. Exclusion criteria included polypharmacy with drugs known to be CYP2D6 inhibitors or CYP3A4 inducers or inhibitors. Treatment failure was analysed in all patients treated with risperidone or aripiprazole without these criteria. The first endpoint in our analysis was the metabolism of risperidone to 9OH-risperidone and aripiprazole to dehydroaripiprazole, estimated by the log-transformed ratio between the concentrations of metabolite and parent drug (ie, the metabolic ratio for risperidone [9OH-risperidone]/[risperidone] and the metabolic ratio for aripiprazole [dehydroaripiprazole]/[aripiprazole]). Endpoint two was measurement of drug exposure, quantified by the dose-normalised sum of parent drug and active metabolite serum concentrations (ie, active moiety). The third endpoint of treatment failure was measured as the number of patients switched from risperidone or aripiprazole to another antipsychotic drug within 1 year after the last therapeutic drug monitoring analysis of risperidone or aripiprazole. Patient subgroups were defined by CYP2D6 genotype-determined metaboliser status: poor metabolisers, intermediate metabolisers, normal metabolisers, and ultrarapid metabolisers. ANOVA was used to assess the differences in metabolic ratios, active moieties, and daily doses between individual metaboliser categories, and risperidone and aripiprazole therapeutic failures were compared by logistic regression using the normal metaboliser subgroup as a reference. FINDINGS: 1288 risperidone-treated patients and 1334 aripiprazole-treated patients were included in the study, of whom 725 (56%) risperidone-treated and 890 (67%) aripiprazole-treated patients were eligible for the pharmacokinetic analyses. CYP2D6 genotype significantly changed risperidone and aripiprazole metabolism resulting in an approximately 1·6-times and 1·4-times increase in risperidone and aripiprazole active moiety exposure in poor and intermediate metabolisers compared with normal metabolisers, respectively (odds ratios [OR] for the risperidone dose-normalised active moiety concentration 1·568, 95% CI 1·401-1·736, and 1·373, 1·213-1·532; and for the aripiprazole dose-normalised active moiety concentration 1·585, 1·447-1·724, and 1·476, 1·263-1·688, respectively; p<0·0001 for all). Compared with doses for normal metabolisers, clinicians reduced daily doses of risperidone and aripiprazole administered to poor metabolisers by 19% (95% CI 5-35, p=0·010) and 15% (95% CI 1-28, p=0·033) respectively. The incidence of switching from risperidone to another antipsychotic was increased in ultrarapid metabolisers (OR 2·934, 95% CI 1·437-5·989, p=0·003) and poor metabolisers (1·874, 1·128-3·112, p=0·015); by contrast, the incidence of switching from aripiprazole to another antipsychotic was not significantly related to CYP2D6 metaboliser status. INTERPRETATION: CYP2D6 genotype had a substantial clinical effect on risperidone and aripiprazole exposure and on the therapeutic failure of risperidone. Pre-emptive CYP2D6 genotyping would be valuable for individualising risperidone and aripiprazole dosing and treatment optimisation. FUNDING: H2020 program U-PGx, The Swedish Research Council, the Swedish Brain foundation, and the South-Eastern Norway Regional Health Authority.


Asunto(s)
Antipsicóticos/administración & dosificación , Aripiprazol/administración & dosificación , Citocromo P-450 CYP2D6/genética , Variantes Farmacogenómicas , Trastornos Psicóticos/tratamiento farmacológico , Risperidona/administración & dosificación , Administración Oral , Adolescente , Adulto , Anciano , Antipsicóticos/farmacocinética , Aripiprazol/farmacocinética , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Noruega , Trastornos Psicóticos/genética , Estudios Retrospectivos , Risperidona/farmacocinética , Insuficiencia del Tratamiento , Adulto Joven
19.
Am J Psychiatry ; 175(5): 463-470, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29325448

RESUMEN

OBJECTIVE: The antidepressant escitalopram is predominantly metabolized by the polymorphic CYP2C19 enzyme. The authors investigated the effect of CYP2C19 genotype on exposure and therapeutic failure of escitalopram in a large patient population. METHOD: A total of 4,228 escitalopram serum concentration measurements from 2,087 CYP2C19-genotyped patients 10-30 hours after drug intake were collected retrospectively from the drug monitoring database at Diakonhjemmet Hospital in Oslo. The patients were divided into subgroups based on CYP2C19 genotype: those carrying inactive (CYP2C19Null) and gain-of-function (CYP2C19*17) variant alleles. The between-subgroup differences in escitalopram exposure (endpoint: dose-harmonized serum concentration) and therapeutic failure (endpoint: switching to another antidepressant within 1 year after the last escitalopram measurement) were evaluated by multivariate mixed model and chi-square analysis, respectively. RESULTS: Compared with the CYP2C19*1/*1 group, escitalopram serum concentrations were significantly increased 3.3-fold in the CYP2C19Null/Null group, 1.6-fold in the CYP2C19*Null/*1 group, and 1.4-fold in the CYP2C19Null/*17 group, whereas escitalopram serum concentrations were significantly decreased by 10% in the CYP2C19*1/*17 group and 20% in the CYP1C19*17/*17 group. In comparison to the CYP2C19*1/*1 group, switches from escitalopram to another antidepressant within 1 year were 3.3, 1.6, and 3.0 times more frequent among the CYP2C19Null/Null, CYP2C19*1/*17, and CYP1C19*17/*17 groups, respectively. CONCLUSIONS: The CYP2C19 genotype had a substantial impact on exposure and therapeutic failure of escitalopram, as measured by switching of antidepressant therapy. The results support the potential clinical utility of CYP2C19 genotyping for individualization of escitalopram therapy.


Asunto(s)
Citalopram/uso terapéutico , Citocromo P-450 CYP2C19/genética , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/genética , Genotipo , Adulto , Anciano , Citalopram/efectos adversos , Monitoreo de Drogas , Sustitución de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Noruega , Estudios Retrospectivos , Insuficiencia del Tratamiento
20.
Pharmacogenomics ; 19(12): 931-936, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30040020

RESUMEN

The ultrarapid CYP2D6 metabolizer (UM) phenotype is caused by CYP2D6 gene duplications in some, but not all, UM individuals. CYP2D6 and the adjacent pseudogene CYP2D7 are highly homologous; however, CYP2D7 harbors a premature stop codon, which is absent in carriers of the rare CYP2D7 variant rs530303678. We addressed whether rs530303678 could generate a functionally active protein, causing the UM phenotype. However, unlike CYP2D6 variants, two CYP2D7 rs530303678 variant isoforms, previously described in liver, showed neither significant protein expression nor catalytic activity toward the CYP2D6 substrates bufuralol or dextromethorphan. We conclude that loss of the stop codon in CYP2D7 does not result in the generation of enzymatically active protein in human liver and thus, cannot cause the UM phenotype.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Variación Genética/genética , Secuencia de Aminoácidos , Línea Celular , Humanos , Hígado/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA