Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Exp Bot ; 70(9): 2491-2504, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30219923

RESUMEN

Functional-structural plant models are increasingly being used to analyse relationships between plant functioning and the topological and spatial organisation of their modular structure. In this study, the performance of an individual-based model accounting for the the architecture and population dynamics of forage legumes in multi-species grasslands was assessed. Morphogenetic shoot and root parameters were calibrated for seven widely used species. Other model parameters concerning C and N metabolism were obtained from the literature. The model was evaluated using a series of independent experiments combining the seven species in binary mixtures that were subject to regular defoliation. For all the species, the model could accurately simulate phytomer demography, leaf area dynamics, and root growth under conditions of weak competition. In addition, the plastic changes induced by competition for light and N in terms of plant development, leaf area, N uptake, and total plant biomass were correctly predicted. The different species displayed contrasting sensitivities to defoliation, and the model was able to predict the superior ability of creeping species to sustain regular defoliation. As a result of competition and management, the balance between species changed over time and was strongly dependent on the pair of species used. The model proved able to capture these differences in community dynamics. Overall, the results demonstrate that integrating the individual components of population dynamics in a process-based model can provide good predictive capacity regarding mixtures of cultivated species.


Asunto(s)
Pradera , Nitrógeno/metabolismo , Biodiversidad , Fabaceae/metabolismo , Desarrollo de la Planta/fisiología , Dinámica Poblacional
2.
J Exp Bot ; 64(1): 317-32, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23213135

RESUMEN

Verticillium wilt is a major threat to alfalfa (Medicago sativa) and many other crops. The model legume Medicago truncatula was used as a host for studying resistance and susceptibility to Verticillium albo-atrum. In addition to presenting well-established genetic resources, this wild plant species enables to investigate biodiversity of the response to the pathogen and putative crosstalk between disease and symbiosis. Symptom scoring after root inoculation and modelling of disease curves allowed assessing susceptibility levels in recombinant lines of three crosses between susceptible and resistant lines, in a core collection of 32 lines, and in mutants affected in symbiosis with rhizobia. A GFP-expressing V. albo-atrum strain was used to study colonization of susceptible plants. Symptoms and colonization pattern in infected M. truncatula plants were typical of Verticillium wilt. Three distinct major quantitative trait loci were identified using a multicross, multisite design, suggesting that simple genetic mechanisms appear to control Verticillium wilt resistance in M. truncatula lines A17 and DZA45.5. The disease functional parameters varied largely in lines of the core collection. This biodiversity with regard to disease response encourages the development of association genetics and ecological approaches. Several mutants of the resistant line, impaired in different steps of rhizobial symbiosis, were affected in their response to V. albo-atrum, which suggests that mechanisms involved in the establishment of symbiosis or disease might have some common regulatory control points.


Asunto(s)
Resistencia a la Enfermedad/genética , Variación Genética , Medicago truncatula/genética , Medicago truncatula/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Verticillium/fisiología , Biodiversidad , Cromosomas de las Plantas/genética , Recuento de Colonia Microbiana , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/genética , Endogamia , Medicago truncatula/inmunología , Modelos Biológicos , Enfermedades de las Plantas/genética , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Verticillium/crecimiento & desarrollo , Xilema/microbiología
3.
Theor Appl Genet ; 126(2): 497-509, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23099818

RESUMEN

Forage quality combines traits related to protein content and energy value. High-quality forages contribute to increase farm autonomy by reducing the use of energy or protein-rich supplements. Genetic analyses in forage legume species are complex because of their tetraploidy and allogamy. Indeed, no genetic studies of quality have been published at the molecular level on these species. Nonetheless, mapping populations of the model species M. truncatula can be used to detect QTL for forage quality. Here, we studied a crossing design involving four connected populations of M. truncatula. Each population was composed of ca. 200 recombinant inbred lines (RIL). We sought population-specific QTL and QTL explaining the whole design variation. We grew parents and RIL in a greenhouse for 2 or 3 seasons and analysed plants for chemical composition of vegetative organs (protein content, digestibility, leaf-to-stem ratio) and stem histology (stem cross-section area, tissue proportions). Over the four populations and all the traits, QTL were found on all chromosomes. Among these QTL, only four genomic regions, on chromosomes 1, 3, 7 and 8, contributed to explaining the variations in the whole crossing design. Surprisingly, we found that quality QTL were located in the same genomic regions as morphological QTL. We thus confirmed the quantitative inheritance of quality traits and tight relationships between quality and morphology. Our findings could be explained by a co-location of genes involved in quality and morphology. This study will help to detect candidate genes involved in quantitative variation for quality in forage legume species.


Asunto(s)
Productos Agrícolas/genética , Fabaceae/genética , Genes de Plantas/genética , Medicago truncatula/genética , Tallos de la Planta/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Marcadores Genéticos , Lignina/metabolismo , Fenotipo , Tallos de la Planta/metabolismo
4.
Front Plant Sci ; 14: 1196134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476178

RESUMEN

China's and Europe's dependence on imported protein is a threat to the food self-sufficiency of these regions. It could be solved by growing more legumes, including alfalfa that is the highest protein producer under temperate climate. To create productive and high-value varieties, the use of large genetic diversity combined with genomic evaluation could improve current breeding programs. To study alfalfa diversity, we have used a set of 395 alfalfa accessions (i.e. populations), mainly from Europe, North and South America and China, with fall dormancy ranging from 3 to 7 on a scale of 11. Five breeders provided materials (617 accessions) that were compared to the 400 accessions. All accessions were genotyped using Genotyping-by-Sequencing (GBS) to obtain SNP allele frequency. These genomic data were used to describe genetic diversity and identify genetic groups. The accessions were phenotyped for phenology traits (fall dormancy and flowering date) at two locations (Lusignan in France, Novi Sad in Serbia) from 2018 to 2021. The QTL were detected by a Multi-Locus Mixed Model (mlmm). Subsequently, the quality of the genomic prediction for each trait was assessed. Cross-validation was used to assess the quality of prediction by testing GBLUP, Bayesian Ridge Regression (BRR), and Bayesian Lasso methods. A genetic structure with seven groups was found. Most of these groups were related to the geographical origin of the accessions and showed that European and American material is genetically distinct from Chinese material. Several QTL associated with fall dormancy were found and most of these were linked to genes. In our study, the infinitesimal methods showed a higher prediction quality than the Bayesian Lasso, and the genomic prediction achieved high (>0.75) predicting abilities in some cases. Our results are encouraging for alfalfa breeding by showing that it is possible to achieve high genomic prediction quality.

5.
Theor Appl Genet ; 124(4): 739-54, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22075808

RESUMEN

Medicago truncatula, as a model species, is useful to study the genetic control of traits of agronomic interest in legumes species. Aerial morphogenesis is a key component of forage and seed yield. It was measured in four mapping populations originating from five parental lines. Single and multi-population quantitative trait locus (QTL) detections were carried out. A large variation was observed within populations and transgressive segregation was noted. Most traits showed high heritabilities in all seasons. Length of primary branches (LPB, cm) was positively correlated to branch elongation rate (BER, cm day(-1)) and aerial dry matter (ADM, g). Flowering time (FT, °C day(-1)) showed negative correlations with length of main stem (LMS, cm) and BER. One hundred and forty-one QTLs for BER, LMS, FT, LPB, diameter of primary branches (DPB), number of primary branches (NPB), number of nodes (NI) and ADM were identified and localized over all eight chromosomes. Single and multi-population analyses showed that the most important regions for aerial morphogenetic traits were chromosomes 1, 2, 7 and 8. Multi-population analysis revealed three regions of major QTLs affecting aerial morphogenetic traits (LPB, LMS, NPB, BER and FT). A region involved in flowering time variation was revealed on chromosome 6 on a single population. These results were used to identify candidate genes that could control variation for aerial morphogenesis traits in this species and in related crop legume species.


Asunto(s)
Medicago truncatula/genética , Morfogénesis , Sitios de Carácter Cuantitativo , Semillas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas , Variación Genética , Medicago truncatula/crecimiento & desarrollo , Fenotipo , Fotoperiodo
6.
Theor Appl Genet ; 124(6): 1139-53, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22234605

RESUMEN

Plant height, which is an estimator of vegetative yield, and crown rust tolerance are major criteria for perennial ryegrass breeding. Genetic improvement has been achieved through phenotypic selection but it should be speeded up using marker-assisted selection, especially in this heterozygous species suffering from inbreeding depression. Using connected multiparental populations should increase the diversity studied and could substantially increase the power of quantitative trait loci (QTL) detection. The objective of this study was to detect the best alleles for plant height and rust tolerance among three connected populations derived from elite material by comparing an analysis per parent and a multipopulation connected analysis. For the studied traits, 17 QTL were detected with the analysis per parent while the additive and dominance models of the multipopulation connected analysis made it possible to detect 33 and 21 QTL, respectively. Favorable alleles have been detected in all parents. Only a few dominance effects were detected and they generally had lower values than the additive effects. The additive model of the multipopulation connected analysis was the most powerful as it made it possible to detect most of the QTL identified in the other analyses and 11 additional QTL. Using this model, plant growth QTL and rust tolerance QTL explained up to 19 and 38.6% of phenotypic variance, respectively. This example involving three connected populations is promising for an application on polycross progenies, traditionally used in breeding programs. Indeed, polycross progenies actually are a set of several connected populations.


Asunto(s)
Alelos , Basidiomycota/patogenicidad , Resistencia a la Enfermedad , Lolium/genética , Sitios de Carácter Cuantitativo , Basidiomycota/crecimiento & desarrollo , Cruzamiento , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , ADN de Plantas/genética , Marcadores Genéticos , Lolium/inmunología , Lolium/microbiología , Fenotipo
7.
BMC Plant Biol ; 11: 183, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22204490

RESUMEN

BACKGROUND: Association studies are of great interest to identify genes explaining trait variation since they deal with more than just a few alleles like classical QTL analyses. They are usually performed using collections representing a wide range of variability but which could present a genetic substructure. The aim of this paper is to demonstrate that association studies can be performed using synthetic varieties obtained after several panmictic generations. This demonstration is based on an example of association between the gibberellic acid insensitive gene (GAI) polymorphism and leaf length polymorphism in 'Herbie', a synthetic variety of perennial ryegrass. METHODS: Leaf growth parameters, consisted of leaf length, maximum leaf elongation rate (LERmax) and leaf elongation duration (LED), were evaluated in spring and autumn on 216 plants of Herbie with three replicates. For each plant, a sequence of 370 bp in GAI was analysed for polymorphism. RESULTS: Genetic effect was highly significant for all traits. Broad sense heritabilities were higher for leaf length and LERmax with about 0.7 in each period and 0.5 considering both periods than for LED with about 0.4 in each period and 0.3 considering both periods. GAI was highly polymorphic with an average of 12 bp between two consecutive SNPs and 39 haplotypes in which 9 were more frequent. Linkage disequilibrium declined rapidly with distance with r 2 values lower than 0.2 beyond 150 bp. Sequence polymorphism of GAI explained 8-14% of leaf growth parameter variation. A single SNP explained 4% of the phenotypic variance of leaf length in both periods which represents a difference of 33 mm on an average of 300 mm. CONCLUSIONS: Synthetic varieties in which linkage disequilibrium declines rapidly with distance are suitable for association studies using the "candidate gene" approach. GAI polymorphism was found to be associated with leaf length polymorphism which was more correlated to LERmax than to LED in Herbie. It is a good candidate to explain leaf length variation in other plant material.


Asunto(s)
Estudios de Asociación Genética , Lolium/genética , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple , Genotipo , Giberelinas , Haplotipos , Desequilibrio de Ligamiento , Lolium/clasificación , Fenotipo
8.
Front Plant Sci ; 12: 782574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868184

RESUMEN

Wider and more profitable legume crop cultivation is an indispensable step for the agroecological transition of global agri-food systems but represents a challenge especially in Europe. Plant breeding is pivotal in this context. Research areas of key interest are represented by innovative phenotypic and genome-based selection procedures for crop yield, tolerance to abiotic and biotic stresses enhanced by the changing climate, intercropping, and emerging crop quality traits. We see outmost priority in the exploration of genomic selection (GS) opportunities and limitations, to ease genetic gains and to limit the costs of multi-trait selection. Reducing the profitability gap of legumes relative to major cereals will not be possible in Europe without public funding devoted to crop improvement research, pre-breeding, and, in various circumstances, public breeding. While most of these activities may profit of significant public-private partnerships, all of them can provide substantial benefits to seed companies. A favorable institutional context may comprise some changes to variety registration tests and procedures.

9.
Theor Appl Genet ; 121(5): 865-76, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20473652

RESUMEN

In alfalfa (Medicago sativa), an autotetraploid forage legume, stem length is a major component of forage yield, quality and competing ability. In this species, flowering date is not a breeding criterion. Association mapping based on a candidate gene approach has given good results in plants, including autotetraploid species for which genetic analyses are complex. The role of a CONSTANS-LIKE gene, identified as a candidate for stem elongation and flowering date in the model legume M. truncatula, was tested for association with the same traits in alfalfa. Four hundred genotypes from ten cultivars were evaluated for stem height and flowering date in two locations during 4 years. They were genotyped with simple sequence repeat markers and a low structuration was noticed. Primers were designed to amplify and sequence two regions of the alfalfa gene homologous to CONSTANS-LIKE. Single nucleotide polymorphisms (SNPs) were detected and their allelic dose in each genotype was scored. Linkage disequilibrium within CONSTANS-LIKE rapidly decreased as expected. Eight SNPs with a frequency above 10% were detected over 1,010 bp (one SNP every 126 bp on average) in the 400 genotypes. This number was lower than observed in a neutral gene (a SNP every 31 bp on average). Highly significant associations of three SNPs to flowering date and stem height were identified. Each SNP explained up to 4.2% of the genetic variance. Thus, as in the model species, the CONSTANS-LIKE gene was shown to be involved in flowering date and stem height in alfalfa.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Flores/fisiología , Genes de Plantas/genética , Medicago sativa/anatomía & histología , Medicago sativa/genética , Tetraploidía , Factores de Transcripción/genética , Alelos , Proteínas de Arabidopsis/química , Clonación Molecular , Proteínas de Unión al ADN/química , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Factores de Transcripción/química
10.
Front Plant Sci ; 11: 578121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552093

RESUMEN

Lucerne (Medicago sativa), a major perennial pasture legume, belongs to a species complex that includes several subspecies with wild and cultivated populations. Stand establishment may be compromised by poor germination. Seed scarification, deterioration and temperature have an impact on germination. The objective of this study was to analyse the genetic diversity of lucerne germination in response to three factors: (1) temperature, with seven constant temperatures ranging from 5 to 40°C, was tested on 38 accessions, (2) seed scarification was tested on the same accessions at 5 and 22°C, (3) seed deterioration was tested on two accessions and two seed lots at the seven temperatures. The germination dynamics of seed lots over time was modelled and three parameters were analysed: germinability (germination capacity), maximum germination rate (maximum% of seeds germinating per time unit), and lag time before the first seed germinates. Seed scarification enhanced germinability at both temperatures and its effect was much higher on falcata and wild sativa accessions. Incomplete loss of the hardseededness trait during domestication and selection is hypothesised, indicating that the introduction of wild material in breeding programmes should be followed by the selection for germinability without scarification. Seed lots with altered germinability had low germination at extreme temperatures, both cold and hot, suggesting that mild temperatures are required to promote germination of damaged seed lots. A large genetic diversity was revealed for germination (both capacity and rate) in response to temperature. All accessions had an optimal germination at 15 or 22°C and a poor germination at 40°C. The sativa varieties and landraces had a high germination from 5 to 34°C while the germination of falcata and the wild sativa accessions were weakened at 5 or 34°C, respectively. These differences are interpreted in terms of adaptation to the climate of their geographical origin regions in order to escape frost or heat/drought risks. These new findings give insights on adaptation and domestication of lucerne in its wide geographic area. They suggest further improvement of germination is needed, especially when introducing wild material in breeding pools to remove scarification requirements and to limit differences in response to temperature.

11.
AoB Plants ; 82016.
Artículo en Inglés | MEDLINE | ID: mdl-27178065

RESUMEN

Interest in the thermal acclimation of photosynthesis has been stimulated by the increasing relevance of climate change. However, little is known about intra-specific variations in thermal acclimation and its potential for breeding. In this article, we examined the difference in thermal acclimation between alfalfa (Medicago sativa) cultivars originating from contrasting origins, and sought to analyze the mechanisms in play. A series of experiments was carried out at seven growth temperatures between 5 and 35 °C using four cultivars from temperate and Mediterranean origin. Leaf traits, the photosynthetic rate at 25 °C (A400 (25)), the photosynthetic rate at optimal temperature (A400 (opt)), the thermal optimum of photosynthesis (Topt), and the photosynthetic parameters from the Farqhuar model were determined. Irrespective of cultivar origin, a clear shift in the temperature responses of photosynthesis was observed as a function of growth temperature, affecting thermal optimum of photosynthesis, photosynthetic rate at optimal temperature and photosynthetic rate at 25 °C. For both cultivars, Topt values increased linearly in leaves grown between 5 and 35 °C. Relative homeostasis of A400 (25) and A400 (opt) was found between 10 °C and 30 °C growth temperatures, but sharp declines were recorded at 5 and 35 °C. This homeostasis was achieved in part through modifications to leaf nitrogen content, which increased at extreme temperatures. Significant changes were also recorded regarding nitrogen partitioning in the photosynthetic apparatus and in the temperature dependence of photosynthetic parameters. The cultivars differed only in terms of the temperature response of photosynthetic parameters, with Mediterranean genotypes displaying a greater sensitivity of the maximum rate of Rubisco carboxylation to elevated temperatures. It was concluded that intra-specific variations in the temperature acclimation of photosynthesis exist among alfalfa cultivars, but that Mediterranean genotypes presented no evidence of superior performance at high temperatures.

12.
Front Plant Sci ; 7: 82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904054

RESUMEN

Under Mediterranean climates, the best strategy to produce rain-fed fodder crops is to develop perennial drought resistant varieties. Summer dormancy present in native germplasm has been shown to confer a high level of survival under severe drought. Nevertheless it has also been shown to be negatively correlated with annual biomass productivity. The aim of this study was to analyze the correlations between summer dormancy and annual biomass productivity related traits and to identify quantitative trait loci (QTL) for these traits in a progeny of a summer dormant cocksfoot parent (Kasbah) and a summer active parent (Medly). A total of 283 offspring and the parents were phenotyped for summer dormancy, plant growth rate (PGR) and heading date in Morocco and for maximum leaf elongation rate (LERm) in France. The individuals were genotyped with a total of 325 markers including 59 AFLP, 64 SSR, and 202 DArT markers. The offspring exhibited a large quantitative variation for all measured traits. Summer dormancy showed a negative correlation with both PGR (-0.34 p < 0.005) and LERm (-0.27 p < 0.005). However, genotypes with both a high level of summer dormancy and a high level of PGR were detected in the progeny. One genetic map per parent was built with a total length of 377 and 423 cM for Kasbah and Medly, respectively. Both different and co-localized QTL for summer dormancy and PGR were identified. These results demonstrate that it should be possible to create summer dormant cocksfoot varieties with a high annual biomass productivity.

13.
BMC Plant Biol ; 3: 9, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14683527

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa) is a major forage crop. The genetic progress is slow in this legume species because of its autotetraploidy and allogamy. The genetic structure of this species makes the construction of genetic maps difficult. To reach this objective, and to be able to detect QTLs in segregating populations, we used the available codominant microsatellite markers (SSRs), most of them identified in the model legume Medicago truncatula from EST database. A genetic map was constructed with AFLP and SSR markers using specific mapping procedures for autotetraploids. The tetrasomic inheritance was analysed in an alfalfa mapping population. RESULTS: We have demonstrated that 80% of primer pairs defined on each side of SSR motifs in M. truncatula EST database amplify with the alfalfa DNA. Using a F1 mapping population of 168 individuals produced from the cross of 2 heterozygous parental plants from Magali and Mercedes cultivars, we obtained 599 AFLP markers and 107 SSR loci. All but 3 SSR loci showed a clear tetrasomic inheritance. For most of the SSR loci, the double-reduction was not significant. For the other loci no specific genotypes were produced, so the significant double-reduction could arise from segregation distortion. For each parent, the genetic map contained 8 groups of four homologous chromosomes. The lengths of the maps were 2649 and 3045 cM, with an average distance of 7.6 and 9.0 cM between markers, for Magali and Mercedes parents, respectively. Using only the SSR markers, we built a composite map covering 709 cM. CONCLUSIONS: Compared to diploid alfalfa genetic maps, our maps cover about 88-100% of the genome and are close to saturation. The inheritance of the codominant markers (SSR) and the pattern of linkage repulsions between markers within each homology group are consistent with the hypothesis of a tetrasomic meiosis in alfalfa. Except for 2 out of 107 SSR markers, we found a similar order of markers on the chromosomes between the tetraploid alfalfa and M. truncatula genomes indicating a high level of colinearity between these two species. These maps will be a valuable tool for alfalfa breeding and are being used to locate QTLs.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Medicago sativa/genética , Alelos , ADN de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Genotipo , Repeticiones de Microsatélite , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo Genético , Poliploidía
14.
Mol Ecol Resour ; 9(3): 746-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-21564734

RESUMEN

No software currently implements a test of linkage disequilibrium in autotetraploid species. We propose a program, LD4X that performs a Fisher's exact test between pairs of alleles at two loci. All combinations of alleles from two loci are treated in turn. If two alleles of a pair of loci have a nonrandom distribution, the markers are considered as linked. The program was tested on a set of microsatellite markers in synthetic alfalfa populations.

15.
Theor Appl Genet ; 117(4): 609-20, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18553068

RESUMEN

Adaptation to the environment and reproduction are dependent on the date of flowering in the season. The objectives of this paper were to evaluate the effect of photoperiod on flowering date of the model species for legume crops, Medicago truncatula and to describe genetic architecture of this trait in multiple mapping populations. The effect of photoperiod (12 and 18 h) was analysed on eight lines. Quantitative variation in three recombinant inbred lines (RILs) populations involving four parental lines was evaluated, and QTL detection was carried out. Flowering occurred earlier in long than in short photoperiods. Modelling the rate of progression to flowering with temperature and photoperiod gave high R2, with line-specific parameters that indicated differential responses of the lines to both photoperiod and temperature. QTL detection showed a QTL on chromosome 7 that was common to all populations and seasons. Taking advantage of the multiple mapping populations, it was condensed into a single QTL with a support interval of only 0.9 cM. In a bioanalysis, six candidate genes were identified in this interval. This design also indicated other genomic regions that were involved in flowering date variation more specifically in one population or one season. The analysis on three different mapping populations detected more QTLs than on a single population, revealed more alleles and gave a more precise position of the QTLs that were common to several populations and/or seasons. Identification of candidate genes was a result of integration of QTL analysis and genomics in M. truncatula.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Flores/crecimiento & desarrollo , Genes de Plantas , Modelos Genéticos , Fotoperiodo , Sitios de Carácter Cuantitativo , Estaciones del Año
16.
Theor Appl Genet ; 114(8): 1391-406, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17375280

RESUMEN

In many legume crops, especially in forage legumes, aerial morphogenesis defined as growth and development of plant organs, is an essential trait as it determines plant and seed biomass as well as forage quality (protein concentration, dry matter digestibility). Medicago truncatula is a model species for legume crops. A set of 29 accessions of M. truncatula was evaluated for aerial morphogenetic traits. A recombinant inbred lines (RILs) mapping population was used for analysing quantitative variation in aerial morphogenetic traits and QTL detection. Genes described to be involved in aerial morphogenetic traits in other species were mapped to analyse co-location between QTLs and genes. A large variation was found for flowering date, morphology and dynamics of branch elongation among the 29 accessions and within the RILs population. Flowering date was negatively correlated to main stem and branch length. QTLs were detected for all traits, and each QTL explained from 5.2 to 59.2% of the phenotypic variation. A QTL explaining a large part of genetic variation for flowering date and branch growth was found on chromosome 7. The other chromosomes were also involved in the variation detected in several traits. Mapping of candidate genes indicates a co-location between a homologue of Constans gene or a flowering locus T (FT) gene and the QTL of flowering date on chromosome 7. Other candidate genes for several QTLs are described.


Asunto(s)
Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/genética , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Componentes Aéreos de las Plantas/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Copas de Floración/genética , Copas de Floración/crecimiento & desarrollo , Medicago truncatula/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo
17.
Theor Appl Genet ; 111(7): 1420-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16151797

RESUMEN

Alfalfa (Medicago sativa) is an autotetraploid, allogamous and heterozygous species whose cultivars are synthetic populations. The breeders apply selection pressure for some agronomic traits within a breeding pool to increase the frequency of favorable individuals. The objective of this study was to investigate the differentiation level among seven cultivars originating from one breeding program, and between these cultivars and the breeding pool, with eight SSR markers. These highly polymorphic and codominant markers, together with recent population genetic statistics extended to autotetraploids, offer tools to analyse genetic diversity in alfalfa. The number of alleles per locus varied between 3 and 24. All loci were at a panmictic equilibrium in the cultivars, except one, probably because of null alleles. With seven SSR loci, each cultivar was at panmictic equilibrium. The mean gene diversity was high, ranging from 0.665 to 0.717 in the cultivars. The parameter F(ST) indicated a low but significant diversity among cultivars. Among 21 pairs of cultivars, 15 were significantly different. The breeding pool also had a high diversity, and was significantly different from each cultivar except the most recent one. Considering the characteristics of the breeding program and the mode of cultivar elaboration, we found that they were unable to generate a large variety differentiation. Estimation of population genetics parameters at SSR loci can be applied for assessing the differences between cultivars or populations, either for variety distinction or the management of genetic resources.


Asunto(s)
Cruzamiento/métodos , Variación Genética , Medicago sativa/genética , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Repeticiones de Minisatélite/genética , Reacción en Cadena de la Polimerasa
18.
Crop Sci ; 42(1): 45-50, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11756252

RESUMEN

Seed yield of alfalfa (Medicago sativa L.) is important in determining the effective distribution of new cultivars to farmers. Many genetic and environmental factors affect seed yield. This study was conducted to explain seed yield variation induced by either environmental conditions or cultivars. We analyzed seed yield, aboveground phytomass, harvest index, and seed yield components for a set of 12 cultivars at four locations across France in each of three years. Each location x year combination was considered an environment. Seed weight, number of pods per inflorescence, number of seeds per pod, and mean seed weight were measured. Mean seed yield was 801 kg ha(-1). Large variation in seed yield was found among cultivars and environments. The cultivar x environment interaction was significant. Among environments, seed yield was highly correlated with aboveground phytomass at harvest (r = 0.94) as the lowest seed yields were obtained in the seeding year. The cultivars most adapted to grazing showed the lowest seed yields. Seed yield was genetically correlated with lodging resistance (r = -0.89) and harvest index (r = 0.99). The mean harvest index was 12.7%. The seed weight per inflorescence showed a high broad-sense heritability (0.58) and a high genetic correlation with seed yield (r = 0.91) and with harvest index (r = 0.96). Variation in seed weight per inflorescence was associated with variation in the number of seeds per pod and number of pods per inflorescence. Seed weight per inflorescence appears to have a strong genetic association with seed yield in alfalfa. Environments with high aboveground phytomass potential also have high seed yield potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA