Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Acta Crystallogr B ; 67(Pt 4): 269-92, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21775807

RESUMEN

Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F43m, Fd3m, Fd3, Fm3m or Fm3c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p(3)-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.

2.
Acta Crystallogr B ; 65(Pt 3): 318-25, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19461141

RESUMEN

This is the second of two papers, where we discuss the cluster structures of a novel family of cluster-based intermetallic phases of unprecedented complexity: cF444-Al(63.6)Ta(36.4) (AT-19), a = 19.1663 (1) A, V = 7040 A3, cF(5928-x)-Al(56.6)Cu(3.9)Ta(39.5), x = 20 (ACT-45), a = 45.376 (1) A, V = 93,428 A3 and cF(23,256-x)-Al(55.4)Cu(5.4)Ta(39.1), x = 122 (ACT-71), a = 71.490 (4) A, V = 365,372 A3. The space group is F43m in all three cases. The structures can be described as packings of clusters such as fullerenes, dodecahedra, pentagonal bifrusta and Friauf polyhedra. A characteristic feature of the two larger structures are nets of hexagonal bipyramidal Ta clusters (h.b.p.). The extremely short distance of 2.536-2.562 A between their apical Ta atoms indicates unusually strong bonding. The large h.b.p. nets are sandwiched between slabs of Friauf polyhedra resembling the structure of the mu phase.

3.
Nat Chem ; 5(1): 61-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23247179

RESUMEN

Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO(2) and XeO(3) become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (<136 GPa). However, it is possible that xenon atoms may be retained at defects in mantle silicates and oxides.


Asunto(s)
Óxidos/química , Presión , Teoría Cuántica , Xenón/química , Cristalografía por Rayos X , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA