Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Res ; 57(1): 25, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720397

RESUMEN

PURPOSE: Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS: PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS: In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION: Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Autofagia/fisiología , Autofagia/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Silenciador del Gen , Ratones Desnudos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893369

RESUMEN

Spinach (Spinacia oleracea) is one of the most famous vegetables worldwide, rich in essential metabolites for various health benefits. It is a valuable plant source that has the potential to be a nutraceutical. This study aimed to evaluate the single characteristic marker compound to establish the validation of HPLC-DAD methods applied to the development of a nutraceutical using spinach samples. Six metabolites (1-6) were identified from the spinach samples such as freeze-dried spinach (FDS) and spinach extract concentrate (SEC) by LC-Q-TOF/MS analysis. Among the six metabolites, 3',4',5-trihydroxy-3-methoxy-6,7-methylenedioxyflavone 4'-glucuronide (TMG) was selected as a marker compound due to its highest abundance and high selectivity. The specificity, accuracy, linearity, precision, repeatability, limit of detection (LOD), and limit of quantification (LOQ) of TMG in the spinach samples (FDS and SEC) were validated according to AOAC international guideline. The specificity was confirmed by monitoring the well separation of the marker compound from other compounds of spinach samples in the base peak intensity (BPI) and ultraviolet (UV) chromatogram. The calibration curve of TMG (15.625~500 µg/mL) had reasonable linearity (R2 = 0.999) considered with LOD and LOQ values, respectively. Recovery rate of TMG was 93-101% for FDS and 90-95% for SEC. The precision was less than 3 and 6% in the intraday and interday. As a result, the HPLC-DAD validation method of TMG in the spinach samples (FDS and SEC) was first established with AOAC and KFDA regulations for approving functional ingredients in functional foods.


Asunto(s)
Spinacia oleracea , Spinacia oleracea/química , Cromatografía Líquida de Alta Presión/métodos , Glucurónidos/análisis , Glucurónidos/química , Límite de Detección , Reproducibilidad de los Resultados , Flavonoides/análisis , Flavonoides/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Flavonas/análisis , Flavonas/química , Estándares de Referencia
3.
Proteomics ; 23(12): e2300035, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37058097

RESUMEN

Rice is a major component of the human diet and feeds more than 50 million people across the globe. We previously developed two pigmented rice cultivars, Super-hongmi (red seeds) and Super-jami (black seeds), that are highly rich in antioxidants and exhibit high levels of radical scavenging activities. However, the molecular mechanism underlying the accumulation of pigments and different antioxidants in these rice cultivars remains largely elusive. Here, we report the proteome profiles of mature Super-hongmi and Super-jami seeds, and compared them with the Hopum (white seeds) using a label-free quantitative proteomics approach. This approach led to the identification of 5127 rice seed proteins of which 1628 showed significant changes in the pigmented rice cultivar(s). The list of significantly modulated proteins included a phytoene desaturase (PDS3) which suggested accumulation of ζ-carotene in red seeds while the black seeds seem to accumulate more of anthocyanins because of the higher abundance of dihydroflavonol 4-reductase. Moreover, proteins associated with lignin and tocopherol biosynthesis were highly increased in both red and black cultivars. Taken together, these data report the seed proteome of three different colored rice seeds and identify novel components associated with pigment accumulation in rice.


Asunto(s)
Antioxidantes , Oryza , Humanos , Antocianinas/metabolismo , Tocoferoles/metabolismo , Oryza/genética , Oryza/metabolismo , Proteoma/metabolismo , Semillas/metabolismo
4.
Curr Issues Mol Biol ; 45(10): 8427-8443, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37886974

RESUMEN

Focal cerebral ischemia (fCI) can result in brain injury and sensorimotor deficits. Brown algae are currently garnering scientific attention as potential therapeutic candidates for fCI. This study investigated the therapeutic effects of the hot water extract of Petalonia binghamiae (wPB), a brown alga, in in vitro and in vivo models of fCI. The neuroprotective efficacy of wPB was evaluated in an in vitro excitotoxicity model established using HT-22 cells challenged with glutamate. Afterward, C57/BL6 mice were administered wPB for 7 days (10 or 100 mg/kg, intragastric) and subjected to middle cerebral artery occlusion and reperfusion (MCAO/R) operation, which was used as an in vivo fCI model. wPB co-incubation significantly inhibited cell death, oxidative stress, and apoptosis, as well as stimulated the expression of heme oxygenase-1 (HO-1), an antioxidant enzyme, and the nuclear translocation of its upstream regulator, nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-22 cells challenged with glutamate-induced excitotoxicity. Pretreatment with either dose of wPB significantly attenuated infarction volume, neuronal death, and sensorimotor deficits in an in vivo fCI model. Furthermore, the attenuation of oxidative stress and apoptosis in the ischemic lesion accompanied the wPB-associated protection. This study suggests that wPB can counteract fCI via an antioxidative effect, upregulating the Nrf2/HO-1 pathway.

5.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835103

RESUMEN

Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng.


Asunto(s)
Arabidopsis , Panax , Proteínas de Plantas/genética , Proteoma/metabolismo , Hidrolasas/metabolismo , Panax/metabolismo , Proteómica , Clorofila A/metabolismo , Tolerancia a la Sal , Arabidopsis/metabolismo , Estrés Fisiológico , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897746

RESUMEN

Exposure to particulate matter (PM) has been linked with the severity of various diseases. To date, there is no study on the relationship between PM exposure and tendon healing. Open Achilles tenotomy of 20 rats was performed. The animals were divided into two groups according to exposure to PM: a PM group and a non-PM group. After 6 weeks of PM exposure, the harvest and investigations of lungs, blood samples, and Achilles tendons were performed. Compared to the non-PM group, the white blood cell count and tumor necrosis factor-alpha expression in the PM group were significantly higher. The Achilles tendons in PM group showed significantly increased inflammatory outcomes. A TEM analysis showed reduced collagen fibrils in the PM group. A biomechanical analysis demonstrated that the load to failure value was lower in the PM group. An upregulation of the gene encoding cyclic AMP response element-binding protein (CREB) was detected in the PM group by an integrated analysis of DNA methylation and RNA sequencing data, as confirmed via a Western blot analysis showing significantly elevated levels of phosphorylated CREB. In summary, PM exposure caused a deleterious effect on tendon healing. The molecular data indicate that the action mechanism of PM may be associated with upregulated CREB signaling.


Asunto(s)
Tendón Calcáneo , Material Particulado , Tendón Calcáneo/metabolismo , Animales , Fenómenos Biomecánicos , Metilación de ADN , Material Particulado/toxicidad , ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
7.
Mol Med ; 27(1): 25, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691614

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is one of the most important medical complications of diabetes mellitus. Autophagy is an important mediator of pathological response and plays a critical role in inflammation during the progression of diabetic nephropathy. Interleukin (IL)-17A favorably modulates inflammatory disorders including DN. In this study, we examined whether IL-17A deficiency affected the autophagy process in the kidneys of mice with streptozotocin (STZ)-induced DN. METHODS: The autophagic response of IL-17A to STZ-induced nephrotoxicity was evaluated by analyzing STZ-induced functional and histological renal injury in IL-17A knockout (KO) mice. RESULTS: IL-17A KO STZ-treated mice developed more severe nephropathy than STZ-treated wild-type (WT) mice, with increased glomerular damage and renal interstitial fibrosis at 12 weeks. IL-17A deficiency also increased the up-regulation of proinflammatory cytokines and fibrotic gene expression after STZ treatment. Meanwhile, autophagy-associated proteins were induced in STZ-treated WT mice. However, IL-17A KO STZ-treated mice displayed a significant decrease in protein expression. Especially, the levels of LC3 and ATG7, which play crucial roles in autophagosome formation, were notably decreased in the IL-17A KO STZ-treated mice compared with their WT counterparts. CONCLUSIONS: IL-17 deficiency aggravates of STZ-induced DN via attenuation of autophagic response. Our study demonstrated that IL-17A mediates STZ-induced renal damage and represents a potential therapeutic target in DN.


Asunto(s)
Autofagosomas/inmunología , Citocinas/inmunología , Diabetes Mellitus Experimental/inmunología , Nefropatías Diabéticas/inmunología , Animales , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Citocinas/genética , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/patología , Humanos , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Factor de Transcripción STAT3/metabolismo , Estreptozocina , Enzimas Ubiquitina-Conjugadoras/metabolismo
8.
Bioorg Med Chem Lett ; 40: 127963, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33741464

RESUMEN

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are rate-limiting enzymes in the kynurenine pathway (KP) of l-tryptophan (l-Trp) metabolism and are becoming key drug targets in the combination therapy of checkpoint inhibitors in immunoncology. To discover a selective and potent IDO1 inhibitor, a structure-activity relationship (SAR) study of N-hydroxybenzofuran-5-carboximidamide as a novel scaffold was investigated in a systematic manner. Among the synthesized compounds, the N-3-bromophenyl derivative 19 showed the most potent inhibition, with an IC50 value of 0.44 µM for the enzyme and 1.1 µM in HeLa cells. The molecular modeling of 19 with the X-ray crystal structure of IDO1 indicated that dipole-ionic interactions with heme iron, halogen bonding with Cys129 and the two hydrophobic interactions were important for the high potency of 19.


Asunto(s)
Amidinas/farmacología , Benzofuranos/farmacología , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Oximas/farmacología , Amidinas/síntesis química , Amidinas/metabolismo , Benzofuranos/síntesis química , Benzofuranos/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Oximas/síntesis química , Oximas/metabolismo , Unión Proteica , Electricidad Estática , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 30(12): 127165, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32305165

RESUMEN

A series of isosteric surrogates of the 4-phenyl group in luminespib were investigated as new scaffolds of the Hsp90 inhibitor for the discovery of novel antitumor agents. Among the synthesized surrogates of isoxazole and pyrazole, compounds 4a, 5e and 12b exhibited potent Hsp90 inhibition in ATPase activity and Her2 degradation assays and significant antitumor activity in A2780 and HCT116 cell lines. Animal studies indicated that compared to luminespib, their activities were superior in A2780 or NCI-H1975 tumor xenograft models. A molecular modeling study demonstrated that compound 4a could fit nicely into the N-terminal ATP binding pocket.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Resorcinoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Resorcinoles/síntesis química , Resorcinoles/química , Relación Estructura-Actividad
10.
J Antimicrob Chemother ; 73(4): 962-972, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329393

RESUMEN

Background: Colistin (polymyxin E) is an important constituent of the polymyxin class of cationic polypeptide antibiotics. Intrarenal oxidative stress can contribute to colistin-induced nephrotoxicity. Nicotinamide adenine dinucleotide 3-phosphate oxidases (Noxs) are important sources of reactive oxygen species. Among the various types of Noxs, Nox4 is predominantly expressed in the kidney. Objectives: We investigated the role of Nox4 and benefit of Nox4 inhibition in colistin-induced acute kidney injury using in vivo and in vitro models. Methods: Human proximal tubular epithelial (HK-2) cells were treated with colistin with or without NOX4 knockdown, or GKT137831 (most specific Nox1/4 inhibitor). Effects of Nox4 inhibition on colistin-induced acute kidney injury model in Sprague-Dawley rats were examined. Results: Nox4 expression in HK-2 cells significantly increased following colistin exposure. SB4315432 (transforming growth factor-ß1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells. Knockdown of NOX4 transcription reduced reactive oxygen species production, lowered the levels of pro-inflammatory markers (notably mitogen-activated protein kinases) implicated in colistin-induced nephrotoxicity and attenuated apoptosis by altering Bax and caspase 3/7 activity. Pretreatment with GKT137831 replicated these effects mediated by downregulation of mitogen-activated protein kinase activities. In a rat colistin-induced acute kidney injury model, administration of GKT137831 resulted in attenuated colistin-induced acute kidney injury as indicated by attenuated impairment of glomerulus function, preserved renal structures, reduced expression of 8-hydroxyguanosine and fewer apoptotic cells. Conclusions: Collectively, these findings identify Nox4 as a key source of reactive oxygen species responsible for kidney injury in colistin-induced nephrotoxicity and highlight a novel potential way to treat drug-related nephrotoxicity.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antibacterianos/efectos adversos , Colistina/efectos adversos , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Humanos , Modelos Biológicos , Ratas Sprague-Dawley
11.
Metab Eng ; 38: 401-408, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725264

RESUMEN

Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.


Asunto(s)
Vías Biosintéticas/genética , Carotenoides/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Ingeniería Metabólica/métodos , Terpenos/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Mejoramiento Genético/métodos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Licopeno , Redes y Vías Metabólicas/genética , Terpenos/aislamiento & purificación
12.
Bioorg Med Chem Lett ; 26(13): 3148-3152, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27173797

RESUMEN

We have previously reported amidopiperidine derivatives as a novel peptide deformylase (PDF) inhibitor and evaluated its antibacterial activity against Gram-positive bacteria, but poor pharmacokinetic profiles have resulted in low efficacy in in vivo mouse models. In order to overcome these weaknesses, we newly synthesized aminopiperidine derivatives with remarkable antimicrobial properties and oral bioavailability, and also identified their in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP).


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Piperidinas/farmacología , Administración Oral , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Bacterias Grampositivas/enzimología , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piperidinas/administración & dosificación , Piperidinas/química , Relación Estructura-Actividad
13.
Phytother Res ; 29(10): 1577-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178909

RESUMEN

Nobiletin and tangeretin are polymethoxy flavonoids (PMFs), found in rich quantities in the peel of citrus fruits. In the present study, we assessed the biological effect of the PMFs on liver damage using a mouse model of binge drinking. First, we extracted PMFs from the peels of Citrus aurantium to make Citrus aurantium extract (CAE). Male C57BL/6 mice were orally treated with silymarin and CAE (50, 100, and 200 mg/kg) for 3 days prior to ethanol (5 g/kg, total of 3 doses) oral gavage. Liver injury was observed in the ethanol alone group, as evidenced by increases in serum hepatic enzymes and histopathologic alteration, as well as by hepatic oxidative status disruption. CAE improved serum marker and hepatic structure and restored oxidative status by enhancing antioxidant enzyme levels and by reducing lipid peroxidation levels. In addition, CAE evidently suppressed inflammation and apoptosis in the livers of mice administered with ethanol, by 85% (tumor necrosis factor-α) and 44% compared to the control group, respectively. Furthermore, CAE activated lipid metabolism related signals and enhanced phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor E2-related factor 2 (Nrf2) with several cytoprotective proteins including heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase. Taken together, the present study demonstrated that, CAE possesses antioxidant, anti-inflammatory, and antiapoptotic activity against ethanol-induced liver injury.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Citrus , Extractos Vegetales , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Consumo Excesivo de Bebidas Alcohólicas , Citrus/química , Modelos Animales de Enfermedad , Etanol/farmacología , Flavonas , Flavonoides/farmacología , Hemo-Oxigenasa 1/metabolismo , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Silimarina/farmacología , Factor de Necrosis Tumoral alfa
14.
Planta Med ; 80(8-9): 645-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24963615

RESUMEN

Korean red ginseng is one of the traditional herbal medicines most widely used in China, Korea, and Japan. To determine whether Korean red ginseng extract can mitigate acute renal nephropathy, we examined its renoprotective effects in a model of cisplatin-induced acute renal failure in Sprague Dawley rats. Korean red ginseng was administered to rats by oral gavage once a day at doses of 100, 300, or 500 mg/kg for 28 days. On day 23, the animals received an intraperitoneal injection of cisplatin (5 mg/kg) to induce acute renal failure. Body weight gain, urine volume, blood urea nitrogen and creatinine concentrations, and expression of p53 were measured. Terminal deoxynucleotidyl transferase dUTP nick end-labeling was used to analyze apoptosis. Kidney tissues from the control and experimental groups were analyzed by immunohistochemistry for inflammatory cytokines and histopathological examination. To identify the mechanism responsible for the renoprotective effects of Korean red ginseng, we measured malondialdehyde concentration as an end product of lipid peroxidation and the activities of the antioxidants superoxide dismutase and glutathione. Korean red ginseng significantly decreased the levels of indicators of renal dysfunction, inflammatory cytokine expression, apoptosis, and malondialdehyde content in the kidney and also significantly attenuated the histopathological changes associated with acute renal failure. These findings suggest that Korean red ginseng has renoprotective effects against cisplatin-induced acute renal failure by reducing oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Cisplatino/efectos adversos , Panax/química , Extractos Vegetales/farmacología , Lesión Renal Aguda/inducido químicamente , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Glutatión/metabolismo , Medicina de Hierbas , Inflamación/tratamiento farmacológico , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Ratas , Ratas Sprague-Dawley , Organismos Libres de Patógenos Específicos , Superóxido Dismutasa/metabolismo
15.
Plant Physiol Biochem ; 206: 108308, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169224

RESUMEN

Seed longevity is a critical characteristic in agriculture, yet the specific genes/proteins responsible for this trait and the molecular mechanisms underlying reduced longevity during seed aging remain largely elusive. Here we report the comparative proteome and metabolome profiling of three rice cultivars exhibiting varying degrees of aging tolerance: Dharial, an aging-tolerant cultivar; Ilmi, an aging-sensitive cultivar; and A2, a moderately aging-tolerant cultivar developed from the crossbreeding of Dharial and Ilmi. Artificial aging treatment (AAT) markedly reduced the germination percentage and enhanced the activities of antioxidant enzymes in all the cultivars. Further, proteomics results showed a key role of the ubiquitin (Ub)-proteasome pathway in the degradation of damaged proteins during AAT while other proteases were majorly reduced. In addition, proteins associated with energy production and protein synthesis were strongly reduced in Ilmi while these were majorly increased in A2 and Dharial. These, along with metabolomics results, suggest that Ub-proteasome mediated protein degradation during AAT results in the accumulation of free amino acids in Ilmi while tolerant cultivars potentially utilize those for energy production and synthesis of stress-related proteins, especially hsp20/alpha-crystallin family protein. Additionally, both Dharial and A2 seem to activate brassinosteroid signaling and suppress jasmonate signaling which initiates a signaling cascade that allows accumulation of enzymatic and non-enzymatic antioxidants for efficient detoxification of aging-induced ROS. Taken together, these results provide an in-depth understanding of the aging-induced changes in rice seeds and highlight key pathways responsible for maintaining seed longevity during AAT.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/metabolismo , Brasinoesteroides/metabolismo , Germinación , Oryza/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Semillas/metabolismo
16.
J Agric Food Chem ; 71(32): 12357-12367, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37549031

RESUMEN

Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.


Asunto(s)
Oryza , Proteoma , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Semillas/genética , Semillas/metabolismo
17.
J Pharm Pharmacol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37942668

RESUMEN

Cisplatin-induced acute kidney injury (AKI) is a clinical disease characterized by a sudden loss of renal function within a few hours or days, due to cisplatin uptake. Fulvestrant is an oestrogen receptor alpha (ERα) antagonist used for endocrine therapy. However, the role of fulvestrant in cisplatin-induced AKI remains unclear. In this study, we investigated the effects of fulvestrant on the regulation of apoptotic cell death and autophagic response in cisplatin-induced AKI. The human kidney proximal tubule epithelial cell line (HK-2) was co-treated with fulvestrant and cisplatin. C57BL/6 mice were subcutaneously injected with fulvestrant and cisplatin was administered via intraperitoneal injection. First, cisplatin treatment increased ERα expression, apoptosis, and autophagy in HK-2 cells. Fulvestrant treatment decreased apoptosis and autophagy, which were accompanied by cisplatin treatment in HK-2 cells. Consistent with in vitro results, cisplatin treatment significantly increased ERα expression in vivo. Additionally, cisplatin treatment increased renal injury, apoptosis, and autophagy. Surprisingly, compared to that in the cisplatin-treated mice group, reduced cisplatin-induced renal injury, apoptosis, and autophagy was observed in the cisplatin+fulvestrant-treated mice group. In summary, these results suggest that fulvestrant plays an important role in cisplatin-induced AKI by decreasing apoptosis and autophagy.

18.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893746

RESUMEN

New compounds with 1H-pyrazolo [3,4-d]pyrimidin-6-amine core scaffolds were synthesized and characterized in vitro to determine their affinity for human A2A and A1 receptors. Among the tested compounds, a few compounds displayed nanomolar binding affinities for both receptors. One particular compound, 11o, showed high binding activities (hA2A Ki = 13.3 nM; hA1 Ki = 55 nM) and full antagonism (hA2A IC50 = 136 nM; hA1 IC50 = 98.8 nM) toward both receptors. Further tests showed that 11o has low hepatic clearance and good pharmacokinetic properties in mice, along with high bioavailability and a high brain plasma ratio. In addition, 11o was associated with very low cardiovascular risk and mutagenic potential, and was well-tolerated in rats and dogs. When tested in an MPTP-induced mouse model of Parkinson's disease, 11o tended to improve behavior. Moreover, 11o dose-dependently reversed haloperidol-induced catalepsy in female rats, with graded ED50 of between 3 and 10 mg/kg. Taken together, these results suggest that this potent dual A2A/A1 receptor antagonist, 11o, is a good candidate for the treatment of Parkinson's disease with an excellent metabolic and safety profile.

19.
Biomedicines ; 10(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36009528

RESUMEN

Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila. LLGL2 is one of the mammalian homologs of Lgl. However, little is known about its function in the prostate. In this study, to explore the new role of LLGL2 in the prostate, we examined the proliferative activity of a BPH-1 cell line, a well-established model for the human prostate biology of benign prostatic hyperplasia (BPH). The expression of LLGL2 was dose-dependently increased in BPH-1 cells after treatment with 17ß-estradiol (E2). Additionally, E2 treatment increased the proliferation of the BPH-1 cells. However, the knockdown of LLGL2 with siRNA significantly suppressed the proliferation of the E2-treated BPH-1 cells. Moreover, si-llgl2 treatment up-regulated the expression of LC-3B, ATG7, and p-beclin, which are known to play a pivotal role in autophagosome formation in E2-treated BPH-1 cells. Overexpression of LLGL2 was able to further prove these findings by showing the opposite results from the knockdown of LLGL2 in E2-treated BPH-1 cells. Collectively, our results suggest that LLGL2 is closely involved in the proliferation of prostate cells by regulating autophagosome formation. These results provide a better understanding of the mechanism involved in the effect of LLGL2 on prostate cell proliferation. LLGL2 might serve as a potential target in the diagnosis and/or treatment of human BPH.

20.
Iran J Pharm Res ; 21(1): e133333, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36896319

RESUMEN

Background: Stauntonia hexaphylla has been a traditional folk remedy for alleviating fever and providing anti-inflammatory properties. Androgenetic alopecia (AGA) is the most common form mediated by the presence of the dihydrotestosterone (DHT). Objectives: In this study, we evaluated the effects of an extract of S. hexaphylla on AGA models and its mechanisms of action. Methods: We studied S. hexaphylla extract to evaluate 5α-reductase and androgen receptor (AR) levels, apoptosis, and cell proliferation in vitro and in vivo. In addition, paracrine factors for androgenic alopecia, such as transforming growth factor beta-1 (TGF-ß1) and dickkopf-a (DKK-1), were examined. Apoptosis was investigated, and the evaluation of proliferation was examined with cytokeratin 14 (CK-14) and proliferating cell nuclear antigen (PCNA). Results: In human follicular dermal papilla cells, the 5α-reductase and AR were decreased following S. hexaphylla treatment, which reduced the Bax/Bcl-2 ratio. Histologically, the dermal thickness and follicle number were higher in the S. hexaphylla groups compared with the AGA group. In addition, the DHT concentration, 5α-reductase, and AR were decreased, thereby downregulating TGF-ß1 and DKK-1 expression and upregulating cyclin D in S. hexaphylla groups. The numbers of keratinocyte-positive and PCNA-positive cells were increased compared to those in the AGA group. Conclusions: The present study demonstrated that the S. hexaphylla extract ameliorated AGA by inhibiting 5α-reductase and androgen signaling, reducing AGA paracrine factors that induce keratinocyte (KC) proliferation, and inhibition apoptosis and catagen prematuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA