Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochem Biophys Res Commun ; 568: 23-29, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34174538

RESUMEN

Gadolinium neutron capture therapy (GdNCT) is a form of binary radiotherapy. It utilizes nuclear reactions that occur when gadolinium-157 is irradiated with thermal neutrons, producing high-energy γ-rays and Auger electrons. Herein, we evaluate the potential of GdNCT for cancer treatment using PEGylated liposome incorporated with an FDA-approved MRI contrast agent. The clinical gadolinium complex (Gadovist®) was successfully encapsulated inside the aqueous core of PEGylated liposomes by repeated freeze and thaw cycling. At a concentration of 152 µM Gd, the Gd-liposome showed high cytotoxicity upon thermal-neutron irradiation. In animal experiments, when a CT26 tumor model was administered with Gd-liposomes (19 mg 157Gd per kg) followed by 20-min irradiation of thermal neutron at a flux of 1.94 × 104 cm-2 s-1, tumor growth was suppressed by 43%, compared to that in the control group, on the 23rd day of post-irradiation. After two-cycle GdNCT treatment at a 10-day interval, tumor growth was more efficiently retarded. On the 31st day after irradiation, the weight of the excised tumor in the GdNCT group (38 mg 157Gd per kg per injection) was only 30% of that of the control group. These results demonstrate the potential of GdNCT using PEGylated liposomes containing MRI contrast agents in cancer treatment.


Asunto(s)
Gadolinio/administración & dosificación , Isótopos/administración & dosificación , Liposomas/química , Neoplasias/radioterapia , Terapia por Captura de Neutrón , Animales , Línea Celular Tumoral , Femenino , Gadolinio/uso terapéutico , Humanos , Isótopos/uso terapéutico , Ratones Endogámicos BALB C , Terapia por Captura de Neutrón/métodos , Polietilenglicoles/química
2.
Molecules ; 25(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150823

RESUMEN

The study of ultra-small paramagnetic gadolinium oxide (Gd2O3) nanoparticles (NPs) as in vivo positive (T1) magnetic resonance imaging (MRI) contrast agents is one of the most attractive fields in nanomedicine. The performance of the Gd2O3 NP imaging agents depends on the surface-coating materials. In this study, poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was used as a surface-coating polymer. The PMVEMA-coated paramagnetic ultra-small Gd2O3 NPs with an average particle diameter of 1.9 nm were synthesized using the one-pot polyol method. They exhibited excellent colloidal stability in water and good biocompatibility. They also showed a very high longitudinal water proton spin relaxivity (r1) value of 36.2 s-1mM-1 (r2/r1 = 2.0; r2 = transverse water proton spin relaxivity) under a 3.0 tesla MR field which is approximately 10 times higher than the r1 values of commercial molecular contrast agents. High positive contrast enhancements were observed in in vivo T1 MR images after intravenous administration of the NP solution sample, demonstrating its potential as a T1 MRI contrast agent.


Asunto(s)
Materiales Biocompatibles Revestidos , Gadolinio , Imagen por Resonancia Magnética , Anhídridos Maleicos , Nanopartículas del Metal , Polivinilos , Animales , Línea Celular Tumoral , Supervivencia Celular , Fenómenos Químicos , Materiales Biocompatibles Revestidos/química , Medios de Contraste , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Anhídridos Maleicos/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Ratones , Estructura Molecular , Tamaño de la Partícula , Polivinilos/química , Relación Señal-Ruido , Análisis Espectral
3.
Synapse ; 73(11): e22123, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31269310

RESUMEN

The purpose of this study was to determine whether the brain uptake of [18 F]FPEB is influenced by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) as efflux transporters in rodents. To assess this possible modulation, positron emission tomography studies were performed in animal models of pharmacological or genetic ablation of these transporters. Compared with the control conditions, when P-gp was blocked with tariquidar, there was an 8%-12% increase in the brain uptake of [18 F]FPEB. In P-gp knockout mice, such as Mdr1a/b(-/-) and Mdr1a/b(-/-) Bcrp1(-/-) , genetic ablation models, there was an increment of 8%-53% in [18 F]FPEB uptake compared with that in the wild-type mice. In contrast, Bcrp knockout mice showed a decrement of 5%-12% uptake and P-gp/Bcrp knockout group displayed an increment of 5%-17% compared with wild type. These results indicate that [18 F]FPEB is possibly a weak substrate for P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Transporte Biológico , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Ratones , Ratones Noqueados , Tomografía de Emisión de Positrones
4.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065511

RESUMEN

Polyacrylic acid (PAA)-coated lanthanide oxide (Ln2O3) nanoparticles (NPs) (Ln = Tb and Ho) with high colloidal stability and good biocompatibility were synthesized, characterized, and investigated as a new class of negative (T2) magnetic resonance imaging (MRI) contrast agents at high MR fields. Their r2 values were appreciable at a 3.0 T MR field and higher at a 9.4 T MR field, whereas their r1 values were negligible at all MR fields, indicating their exclusive induction of T2 relaxations with negligible induction of T1 relaxations. Their effectiveness as T2 MRI contrast agents at high MR fields was confirmed from strong negative contrast enhancements in in vivo T2 MR images at a 9.4 T MR field after intravenous administration into mice tails.

5.
J Nanosci Nanotechnol ; 20(8): 4638-4642, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126632

RESUMEN

Ultrasmall Bi2O3 nanoparticles (davg = 1.5 nm) coated with biocompatible and hydrophilic D-glucuronic acid were prepared for the first time through a simple one-step polyol process and their potential as CT contrast agents were investigated by measuring their X-ray attenuation properties. Their observed X-ray attenuation power was stronger than that of a commercial iodine CT contrast agent at the same atomic concentration, as consistent with the magnitudes of atomic X-ray attenuation coefficients (i.e., Bi > I), and much stronger at the same number density. The results indicate that the nanoparticle sample is a potential CT contrast agent.


Asunto(s)
Yodo , Nanopartículas , Medios de Contraste , Ácido Glucurónico , Tomografía Computarizada por Rayos X
6.
Mol Imaging Biol ; 22(4): 1031-1042, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32086763

RESUMEN

PURPOSE: Neuroinflammation in Parkinson's disease (PD) is known to play a pivotal role in progression to neuronal degeneration. It has been reported that colony-stimulation factor 1 receptor (CSF-1R) inhibition can effectively deplete microglia. However, its therapeutic efficacy in PD is unclear still now. PROCEDURES: To elucidate this issue, we examined the contribution of microglial depletion to PD by behavioral testing, positron emission tomography (PET) imaging, and immunoassays in sham, PD, and microglial depletion PD model (PLX3397 was administered to PD groups, with n = 6 in each group). RESULTS: The microglial depletion in PD model showed improved sensory motor function and depressive-like behavior. NeuroPET revealed that PLX3397 treatment resulted in partial recovery of striatal neuro-inflammatory functions (binding values of [18F]DPA-174 for PD, 1.47 ± 0.12, p < 0.01 vs. for PLX3397 in PD: 1.33 ± 0.26) and the dopaminergic (binding values of 18F-FP-CIT for PD, 1.32 ± 0.07 vs. for PLX3397 in PD: 1.54 ± 0.10, p < 0.01) and glutamatergic systems (binding values of [18F]FPEB for PD: 9.22 ± 0.54 vs. for PLX3397 Tx in PD: 9.83 ± 0.96, p > 0.05). Western blotting for microglia showed similar changes. CONCLUSION: Microglial depletion has inflammation-related therapeutic effects, which have beneficial effects on motor and nonmotor symptoms of PD.


Asunto(s)
Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/patología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Conducta Animal , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Masculino , Microglía/efectos de los fármacos , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , Pirazoles/química , Pirimidinas/química , Ratas Sprague-Dawley , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Natación , Tropanos/química
7.
Radiat Res ; 193(1): 54-62, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682543

RESUMEN

We monitored a physiological response in a neutron-exposed normal mouse brain using two imaging tools, [18F]fluro-deoxy-D-glucose positron emission tomography ([18F]FDG-PET) and diffusion weighted-magnetic resonance imaging (DW-MRI), as an imaging biomarker. We measured the apparent diffusion coefficient (ADC) of DW-MRI and standardized uptake value (SUV) of [18F]FDG-PET, which indicated changes in the cellular environment for neutron irradiation. This approach was sensitive enough to detect cell changes that were not confirmed in hematoxylin and eosin (H&E) results. Glucose transporters (GLUT) 1 and 3, indicators of the GLUT capacity of the brain, were significantly decreased after neutron irradiation, demonstrating that the change in blood-brain-barrier (BBB) permeability affects the GLUT, with changes in both SUV and ADC values. These results demonstrate that combined imaging of the same object can be used as a quantitative indicator for in vivo pathological changes. In particular, the radiation exposure assessment of combined imaging, with specific integrated functions of [18F]FDG-PET and MRI, can be employed repeatedly for noninvasive analysis performed in clinical practice. Additionally, this study demonstrated a novel approach to assess the extent of damage to normal tissues as well as therapeutic effects on tumors.


Asunto(s)
Encéfalo/fisiología , Encéfalo/efectos de la radiación , Imagen de Difusión por Resonancia Magnética , Fluorodesoxiglucosa F18 , Neutrones/efectos adversos , Tomografía de Emisión de Positrones , Exposición a la Radiación/efectos adversos , Animales , Encéfalo/diagnóstico por imagen , Femenino , Ratones Endogámicos BALB C , Imagen Multimodal , Exposición Profesional/efectos adversos
8.
RSC Adv ; 10(2): 865-874, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35494457

RESUMEN

Gadolinium neutron capture therapy (GdNCT) is considered as a new promising cancer therapeutic technique. Nevertheless, limited GdNCT applications have been reported so far. In this study, surface-modified ultrasmall gadolinium oxide nanoparticles (UGNPs) with cancer-targeting ability (d avg = 1.8 nm) were for the first time applied to the in vivo GdNCT of cancer using nude model mice with cancer, primarily because each nanoparticle can deliver hundreds of Gd to the cancer site. For applications, the UGNPs were grafted with polyacrylic acid (PAA) for biocompatibility and colloidal stability, which was then conjugated with cancer-targeting arginylglycylaspartic acid (RGD) (shortly, RGD-PAA-UGNPs). The solution sample was intravenously administered into the tails of nude model mice with cancer. At the time of the maximum accumulation of the RGD-PAA-UGNPs at the cancer site, which was monitored using magnetic resonance imaging, the thermal neutron beam was locally irradiated onto the cancer site and the cancer growth was monitored for 25 days. The cancer growth suppression was observed due to the GdNCT effects of the RGD-PAA-UGNPs, indicating that the surface-modified UGNPs with cancer-targeting ability are potential materials applicable to the in vivo GdNCT of cancer.

9.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663663

RESUMEN

The αvß3 integrin is a heterodimeric adhesion molecule involved in tumor cell migration and angiogenesis. The integrin is overexpressed in angiogenic tumor endothelial cells, where it typically has a low concentration. This specific expression of αvß3 makes it a valid biomarker for antiangiogenic and imaging drugs. As a functional imaging modality, positron emission tomography (PET) provides information about biochemical and physiological changes in vivo, due to its unique high sensitivity at the nanomolar scale. Hence, radiometal-based PET radiopharmaceuticals have received great attention for the non-invasive quantification of tumor angiogenesis. This paper provides a systemic protocol to prepare a new radiometal-labeled peptide for the evaluation of angiogenesis. This protocol contains information about radiochemical reliability, lipophilicity, cell uptake, serum stability, and pharmacokinetic properties. The 68Ga-RGD-peptide is one of the representative PET ligands toward αvß3 integrin. Here, we introduce a protocol to prepare a 68Ga-RGD-peptide and the evaluation of its biological efficacy.


Asunto(s)
Arginina/metabolismo , Ácido Aspártico/metabolismo , Neovascularización Patológica/metabolismo , Humanos , Péptidos/química
10.
Contrast Media Mol Imaging ; 2018: 3727109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30515066

RESUMEN

Gadolinium-neutron capture therapy (Gd-NCT) is based on the nuclear capture reaction that occurs when 157Gd is irradiated with low energy thermal neutrons to primarily produce gamma photons. Herein, we investigated the effect of neutron capture therapy (NCT) using a small molecular gadolinium complex, Gd-DO3A-benzothiazole (Gd-DO3A-BTA), which could be a good candidate for use as an NCT drug due to its ability to enter the intracellular nuclei of tumor cells. Furthermore, MRI images of Gd-DO3A-BTA showed a clear signal enhancement in the tumor, and the images also played a key role in planning NCT by providing accurate information on the in vivo uptake time and duration of Gd-DO3A-BTA. We injected Gd-DO3A-BTA into MDA-MB-231 breast tumor-bearing mice and irradiated the tumors with cyclotron neutrons at the maximum accumulation time (postinjection 6 h); then, we observed the size of the growing tumor for 60 days. Gd-DO3A-BTA showed good therapeutic effects of chemo-Gd-NCT for the in vivo tumor models. Simultaneously, the Gd-DO3A-BTA groups ([Gd-DO3A-BTA(+), NCT(+)]) showed a significant reduction in tumor size (p < 0.05), and the inhibitory effect on tumor growth was exhibited in the following order: [Gd-DO3A-BTA(+), NCT(+)] > [Gd-DO3A-BTA(+), NCT(-)] > [Gd-DO3A-BTA(-), NCT(+)] > [Gd-DO3A-BTA(-), NCT(-)]. On day 60, the [Gd-DO3A-BTA(+), NCT(+)] and [Gd-DO3A-BTA(-), NCT(-)] groups exhibited an approximately 4.5-fold difference in tumor size. Immunohistochemistry studies demonstrated that new combinational therapy with chemo-Gd-NCT could treat breast cancer by both the inhibition of tumor cell proliferation and induction of apoptosis-related proteins, with in vivo tumor monitoring by MRI.


Asunto(s)
Benzotiazoles/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Gadolinio/uso terapéutico , Terapia por Captura de Neutrón/métodos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Combinación de Medicamentos , Xenoinjertos , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Carga Tumoral/efectos de los fármacos
11.
RSC Adv ; 8(23): 12653-12665, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35541232

RESUMEN

Monodisperse and ultrasmall gadolinium oxide (Gd2O3) nanoparticle colloids (d avg = 1.5 nm) (nanoparticle colloid = nanoparticle coated with hydrophilic ligand) were synthesized and their performance as a multifunctional tumor theragnostic agent was investigated. The aqueous ultrasmall nanoparticle colloidal suspension was stable and non-toxic owing to hydrophilic polyacrylic acid (PAA) coating that was partly conjugated with rhodamine B (Rho) for an additional functionalization (mole ratio of PAA : Rho = 5 : 1). First, the ultrasmall nanoparticle colloids performed well as a powerful T1 magnetic resonance imaging (MRI) contrast agent: they exhibited a very high longitudinal water proton relaxivity (r 1) of 22.6 s-1 mM-1 (r 2/r 1 = 1.3, r 2 = transverse water proton relaxivity), which was ∼6 times higher than those of commercial Gd-chelates, and high positive contrast enhancements in T1 MR images in a nude mouse after intravenous administration. Second, the ultrasmall nanoparticle colloids were applied to gadolinium neutron capture therapy (GdNCT) in vitro and exhibited a significant U87MG tumor cell death (28.1% net value) after thermal neutron beam irradiation, which was 1.75 times higher than that obtained using commercial Gadovist. Third, the ultrasmall nanoparticle colloids exhibited stronger fluorescent intensities in tumor cells than in normal cells owing to conjugated Rho, proving their pH-sensitive fluorescent tumor cell detection ability. All these results together demonstrate that ultrasmall Gd2O3 nanoparticle colloids are the potential multifunctional tumor theragnostic agent.

12.
Contrast Media Mol Imaging ; 2017: 3981358, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29097919

RESUMEN

The thymidine analogue 3'-deoxy-3'-[18F]fluorothymidine, or [18F]fluorothymidine ([18F]FLT), is used to measure tumor cell proliferation with positron emission tomography (PET) imaging technology in nuclear medicine. FLT is phosphorylated by thymidine kinase 1 (TK1) and then trapped inside cells; it is not incorporated into DNA. Imaging with 18F-radiolabeled FLT is a noninvasive technique to visualize cellular proliferation in tumors. However, it is difficult to distinguish between [18F]FLT and its metabolites by PET imaging, and quantification has not been attempted using current imaging methods. In this study, we successfully acquired in vivo19F spectra of natural or nonradioactive 3'-deoxy-3'-fluorothymidine ([19F]FLT) and its monophosphate metabolite (FLT-MP) in a tumor xenograft mouse model using 9.4T magnetic resonance imaging (MRI). This preliminary result demonstrates that 19F magnetic resonance spectroscopy (MRS) with FLT is suitable for the in vivo assessment of tumor aggressiveness and for early prediction of treatment response.


Asunto(s)
Proliferación Celular , Imagen por Resonancia Magnética con Fluor-19/métodos , Neoplasias/diagnóstico por imagen , Animales , Línea Celular Tumoral , Didesoxinucleósidos/metabolismo , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Neoplasias/patología
13.
J Biomed Nanotechnol ; 12(5): 894-908, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27305813

RESUMEN

This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B.


Asunto(s)
Quelantes/química , Gadolinio/química , Imagen por Resonancia Magnética , Nanopartículas/química , Nanomedicina Teranóstica , Animales , Benzotiazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Coloides , Conjuntiva/citología , Modelos Animales de Enfermedad , Dispersión Dinámica de Luz , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Hígado/patología , Ratones , Nanopartículas/ultraestructura , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Distribución Tisular/efectos de los fármacos , Agua/química
14.
J Med Chem ; 56(20): 8104-11, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24063520

RESUMEN

A gadolinium complex of 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid (DO3A) and benzothiazole-aniline (BTA) of the type [Gd(DO3A-BTA)(H2O)] has been prepared for use as a single molecule theranostic agent. The kinetic inertness and r1 relaxivity (= 3.84 mM(-1) s(-1)) of the complex compare well with those of structurally analogous Gd-DOTA. The same complex is not only tumor-specific but also intracellular, enhancing MR images of cytosols and nuclei of tumor cells such as MCF-7, MDA-MB-231, and SK-HEP-1. Both DO3A-BTA and Gd(DO3A-BTA) reveal antiproliferative activities as demonstrated by GI50 and TGI values obtainable from the cell counting kit-8 (CCK-8) assays performed on these cell lines. Ex vivo and in vivo monitoring of tumor sizes provide parallel and supportive observations for such antiproliferative activities.


Asunto(s)
Benzotiazoles/química , Gadolinio/química , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Organometálicos/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Femenino , Humanos , Células MCF-7 , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Compuestos Organometálicos/farmacología , Sensibilidad y Especificidad , Ensayos Antitumor por Modelo de Xenoinjerto
15.
ACS Med Chem Lett ; 3(12): 1003-7, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900422

RESUMEN

We report the synthesis of DO3A derivatives of 2,2'-diaminobiphenyl (1a,b) and their Gd complexes of the type [Gd(1)(H2O)]·xH2O (2a,b) for use as new MRI blood-pool contrast agents (BPCAs) that provide strong and prolonged vascular enhancement. Pharmacokinetic inertness of 2 compares well with that of structurally related Dotarem, a DOTA-based MRI CA currently in use. The R 1 relaxivity in water reaches 7.3 mM(-1) s(-1), which is approximately twice as high as that of Dotarem (R 1 = 3.9 mM(-1) s(-1)). They show interaction with HSA to give association constants (K a) in the order of two (∼10(2)), revealing the existence of the blood-pool effect. The in vivo MR images of mice obtained with 2 are coherent, showing strong signal enhancement in both heart, abdominal aorta, and small vessels. Furthermore, the brain tumor is vividly enhanced for an extended period of time.

16.
J Med Chem ; 54(15): 5385-94, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21707088

RESUMEN

We report the synthesis of macrocyclic DTPA conjugates of 2,2'-diaminobiphenyl and their Gd complexes of the type [Gd(L)(H(2)O)]·xH(2)O (2a,b; L = 1a,b) for use as new MRI blood-pool contrast agents (MRI BPCAs). Pharmacokinetic inertness of 2 compares well with those of analogous Gd-DTPA MRI CAs currently in use. The present system also shows very high stability in human serum. The R(1) relaxivity reaches 10.9 mM(-1) s(-1), which is approximately 3 times as high as that of structurally related Gd-DOTA (R(1) = 3.7 mM(-1) s(-1)). The R(1) relaxivity in HSA goes up to 37.2 mM(-1) s(-1), which is almost twice as high as that of MS-325, a leading BPCA, demonstrating a strong blood pool effect. The in vivo MR images of mice obtained with 2b are coherent, showing strong signal enhancement in heart, abdominal aorta, and small vessels. Even the brain tumor is vividly enhanced for an extended period of time. The structural uniqueness of 2 is that it is neutral in charge and thus makes no resort to electrostatic interaction, supposedly one of the essential factors for the blood-pool effect.


Asunto(s)
Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Gadolinio DTPA/química , Ácido Pentético/análogos & derivados , Animales , Neoplasias Encefálicas/diagnóstico , Línea Celular Tumoral , Estabilidad de Medicamentos , Glioma/diagnóstico , Humanos , Cinética , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ácido Pentético/síntesis química , Ácido Pentético/farmacología , Ratas , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA