Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 35(2): e21340, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33455027

RESUMEN

The purpose of this study is to determine whether moderate aerobic exercise training improves high-fat diet-induced alterations in mitochondrial function and structure in the skeletal muscle. Male 4-week-old C57BL/6 mice were randomly divided into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and high-fat diet plus exercise (HFD + EX). After obesity was induced by 20 weeks of 60% HFD, treadmill exercise training was performed at 13-16 m/min, 40-50 min/day, and 6 days/week for 12 weeks. Mitochondrial structure, function, and dynamics, and mitophagy were analyzed in the skeletal muscle fibers from the red gastrocnemius. Exercise training increased mitochondrial number and area and reduced high-fat diet-induced obesity and hyperglycemia. In addition, exercise training attenuated mitochondrial dysfunction in the permeabilized myofibers, indicating that HFD-induced decrease of mitochondrial O2 respiration and Ca2+ retention capacity and increase of mitochondrial H2 O2 emission were attenuated in the HFD + EX group compared to the HFD group. Exercise also ameliorated HFD-induced imbalance of mitochondrial fusion and fission, demonstrating that HFD-induced decrease in fusion protein levels was elevated, and increase in fission protein levels was reduced in the HFD + EX groups compared with the HFD group. Moreover, dysregulation of mitophagy induced by HFD was mitigated in the HFD + EX group, indicating a decrease in PINK1 protein level. Our findings demonstrated that moderate aerobic exercise training mitigated obesity-induced insulin resistance by improving mitochondrial function, and reversed obesity-induced mitochondrial structural damage by improving mitochondrial dynamics and mitophagy, suggesting that moderate aerobic exercise training may play a therapeutic role in protecting the skeletal muscle against mitochondrial impairments and insulin resistance induced by obesity.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/métodos , Animales , Señalización del Calcio , Respiración de la Célula , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Obesidad/etiología , Obesidad/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
2.
Undersea Hyperb Med ; 47(1): 93-100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176950

RESUMEN

The purpose of this study was to investigate the effects of a single bout of heliox non-saturation diving on the cardiovascular system and cognitive function. Ten recreational scuba divers (10 males, ∼35 years old) participated in this study. These subjects made two pool dives within a one-week interval, alternating gases with compressed air (21% O2, 79% N2) and with heliox (21% O2 and 79% He). The depth was to 26 meters over a 20-minute duration. The results showed that heliox diving significantly increased blood O2 saturation by 1.15% and significantly decreased blood lactate levels by ∼57% when compared with air diving (P ≺ 0.05). However, there were no significant differences in resting heart rate, systolic or diastolic pressure, core body blood pressure, and pulse wave velocity between the heliox and air dives. The Stroop test showed that the heliox dive significantly increased cognitive function compared with the air dive in both the simple test (Offtime) and interference test (Ontime) (P ≺ 0.05). It was concluded that the heliox dive increases blood O2 saturation and decreases blood lactate concentration when compared with air dives. These conditions are likely to help divers reduce hypoxia in the water, reduce the risk of loss of consciousness, reduce fatigue and allow them to dive for longer. Heliox diving may also help judgment and risk coping skills in the water due to the improvement of cognitive ability as compared to air breathing dives.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Cognición/efectos de los fármacos , Buceo/fisiología , Helio/farmacología , Ácido Láctico/sangre , Oxígeno/sangre , Adulto , Aire , Presión Sanguínea/efectos de los fármacos , Hipoxia de la Célula , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipoxia/sangre , Hipoxia/prevención & control , Masculino , Oxígeno/farmacología , Análisis de la Onda del Pulso , Recreación , Factores de Tiempo , Rigidez Vascular
3.
J Exerc Rehabil ; 18(1): 2-9, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35356136

RESUMEN

A decline in estrogen levels during menopause is associated with the loss of muscle mass and function, and it can accelerate sarcopenia. However, with the growing number of postmenopausal women due to the increase in life expectancy, the effects of estrogen on skeletal muscle are not completely understood. This article reviews the relationship between estrogen deficiency and skeletal muscle, its potential mechanisms, including those involving mitochondria, and the effects of exercise on estrogen deficiency-induced skeletal muscle impairment. In particular, mitochondrial dysfunction induced by estrogen deficiency accelerates sarcopenia via mitochondrial dynamics, mitophagy, and mitochondrial-mediated apoptosis. It is well known that exercise training is essential for health, including for the improvement of sarcopenia. This review highlights the importance of exercise training (aerobic and resistance exercise) as a therapeutic intervention against estrogen deficiency-induced sarcopenia.

4.
BMB Rep ; 54(11): 575-580, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34674798

RESUMEN

Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagyrelated proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-related protein levels in the skeletal muscle of rats. Eight-weekold male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration. [BMB Reports 2021; 54(11): 575-580].


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Cisplatino/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Proteínas Relacionadas con la Autofagia/genética , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Fosforilación , Ratas , Ratas Wistar
5.
J Clin Med ; 9(7)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707695

RESUMEN

Statins are used to prevent and treat atherosclerotic cardiovascular disease, but they also induce myopathy and mitochondrial dysfunction. Here, we investigated whether exercise training prevents glucose intolerance, muscle impairment, and mitochondrial dysfunction in the skeletal muscles of Wistar rats treated with atorvastatin (5 mg kg-1 day-1) for 12 weeks. The rats were assigned to the following three groups: the control (CON), atorvastatin-treated (ATO), and ATO plus aerobic exercise training groups (ATO+EXE). The ATO+EXE group exhibited higher glucose tolerance and forelimb strength and lower creatine kinase levels than the other groups. Mitochondrial respiratory and Ca2+ retention capacity was significantly lower in the ATO group than in the other groups, but exercise training protected against atorvastatin-induced impairment in both the soleus and white gastrocnemius muscles. The mitochondrial H2O2 emission rate was relatively higher in the ATO group and lower in the ATO+EXE group, in both the soleus and white gastrocnemius muscles, than in the CON group. In the soleus muscle, the Bcl-2, SOD1, SOD2, Akt, and AMPK phosphorylation levels were significantly higher in the ATO+EXE group than in the ATO group. In the white gastrocnemius muscle, the SOD2, Akt, and AMPK phosphorylation levels were significantly higher in the ATO+EXE group than in the ATO group. Therefore, exercise training might regulate atorvastatin-induced muscle damage, muscle fatigue, and mitochondrial dysfunction in the skeletal muscles.

6.
Int Neurourol J ; 23(Suppl 1): S22-31, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30832464

RESUMEN

PURPOSE: This study aimed to investigate the effects of single-bout exercise on mitochondrial function, dynamics (fusion, fission), and mitophagy in cardiac and skeletal muscles. METHODS: Fischer 344 rats (4 months old) were randomly divided into the control (CON) or acute exercise (EX) group (n=10 each). The rats performed a single bout of treadmill exercise for 60 minutes. Mitochondrial function (e.g., O2 respiration, H2O2 emission, Ca2+ retention capacity), mitochondrial fusion (e.g., Mfn1, Mfn2, Opa1), mitochondrial fission (e.g., Drp1, Fis1), and mitophagy (e.g., Parkin, Pink1, LC3II, Bnip3) were measured in permeabilized cardiac (e.g., left ventricle) and skeletal (e.g., soleus, white gastrocnemius) muscles. RESULTS: Mitochondrial O2 respiration and Ca2+ retention capacity were significantly increased in all tissues of the EX group compared with the CON group. Mitochondrial H2O2 emissions showed tissue-specific results; the emissions showed no significant differences in the left ventricle or soleus (type I fibers) but was significantly increased in the white gastrocnemius (type II fibers) after acute exercise. Mitochondrial fusion and fission were not altered in any tissues of the EX group. Mitophagy showed tissue-specific differences: It was not changed in the left ventricle or white gastrocnemius, whereas Parkin and LC3II were significantly elevated in the soleus muscle. CONCLUSION: A single bout of aerobic exercise may improve mitochondrial function (e.g., O2 respiration and Ca2+ retention capacity) in the heart and skeletal muscles without changes in mitochondrial dynamics or mitophagy.

7.
J Exerc Rehabil ; 15(4): 512-517, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31523670

RESUMEN

This study aimed to determine the effects of a single bout exercise on mitochondria-mediated apoptotic signaling in cardiac and skeletal muscles. Fischer 344 rats (4 months old) were randomly divided into the control or a single bout of exercise group (n=10 each). The rats performed a single bout of treadmill exercise for 60 min. Mitochondria-mediated apoptotic signaling (e.g., Bax, Bcl-2, mitochondrial permeability transition pore [mPTP] opening, cytochrome c, and cleaved caspase-3) was measured in cardiac (e.g., left ventricle) and skeletal (e.g., soleus and white gastrocnemius) muscles. A single bout of exercise significantly decreased mPTP opening sensitivity in all tissues. However, a single bout of exercise did not show any statistical differences in Bax, Bcl-2, cytochrome c, and cleaved caspase-3 in all tissues measured. A single bout of exercise did not show definite results on characteristics of mitochondria-mediated apoptotic signaling. Therefore, further research is necessary to provide a more mechanistic understanding of the apoptosis pathway.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30347719

RESUMEN

Obesity is characterized by the induction of skeletal muscle remodeling and mitochondria-mediated apoptosis. Exercise has been reported as a positive regulator of skeletal muscle remodeling and apoptosis. However, the effects of exercise on skeletal muscle remodeling and mitochondria-mediated apoptosis in obese skeletal muscles have not been clearly elucidated. Four-week-old C57BL/6 mice were randomly assigned into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and HFD plus exercise groups (HFD + EX). After obesity was induced by 20 weeks of 60% HFD feeding, treadmill exercise was performed for 12 weeks. Exercise ameliorated the obesity-induced increase in extramyocyte space and a decrease in the cross-sectional area of the skeletal muscle. In addition, it protected against increases in mitochondria-mediated apoptosis in obese skeletal muscles. These results suggest that exercise as a protective intervention plays an important role in regulating skeletal muscle structure and apoptosis in obese skeletal muscles.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/fisiología , Músculo Esquelético/fisiopatología , Obesidad/complicaciones , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/fisiopatología , Distribución Aleatoria
9.
J Exerc Nutrition Biochem ; 18(4): 355-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25671202

RESUMEN

PURPOSE: Arterial stiffness is an independent predictor of cardiovascular risk and may contribute to reduced running capacity in humans. This study investigated the relationship between course record and arterial stiffness in marathoners who participated in the Seoul International Marathon in 2012. METHODS: A total of 30 amateur marathoners (Males n = 28, Females n = 2, mean age = 51.6 ± 8.3 years) were assessed before and after the marathon race. Brachial-ankle pulse wave velocity (ba-PWV) was assessed by VP-1000 plus (Omron Healthcare Co., Ltd., Kyoto, Japan) before and immediately after the marathon race. Pearson's correlation coefficient was used to determine the relationship between race record and ba-PWV. In addition, Wilcoxon signed rank test was used to determine the difference in ba-PWV between before and after the race. RESULTS: There was no significant change in the ba-PWV of marathoners before and after the race (1271.1 ± 185 vs. 1268.8 ± 200 cm/s, P=0.579). Both the full course record (Pearson's correlation coefficient = 0.416, P = 0.022) and the record of half line (Pearson's correlation coefficient = 0.482, P = 0.007) were positively related with the difference in ba-PWV, suggesting that reduced arterial stiffness is associated with a better running record in the marathon. CONCLUSION: These results may suggest that good vascular function contributes to a better running record in the marathon race.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA