Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Parasitol Res ; 111(1): 441-50, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22362365

RESUMEN

Metronidazole (MTR) is frequently used for the treatment of Blastocystis infections, but with variable effectiveness, and often with treatment failures as a possible result of drug resistance. We have developed two Blastocystis MTR-resistant (MTR(R)) subtype 4 WR1 lines (WR1-M4 and WR1-M5), with variable susceptibility to a panel of anti-protozoal agents including various 5-nitroimidazoles, nitazoxanide and furazolidone. WR1-M4 and WR1-M5 were developed and assessed over an 18-month period and displayed persistent MTR resistance, being more than 2.5-fold less susceptible to MTR than the parent isolate. The MTR(R) lines grew with a similar g time to WR1, but were morphologically less consistent with a mixture of size. All Blastocystis isolates and the MTR(R) lines were most susceptible to the 5-nitroimidazole drug ronidazole. WR1-M5 was apparently cross-resistant to satranidazole and furazolidone, and WR1-M4 was cross-resistant to nitazoxanide. These MTR(R) lines now provide a valuable tool for the continued assessment of the efficacy and mechanism of action of new and established drugs against a range of Blastocystis sp. subtypes, in order to identify a universally effective drug and to facilitate understanding of the mechanisms of drug action and resistance in Blastocystis.


Asunto(s)
Antiprotozoarios/farmacología , Blastocystis/efectos de los fármacos , Resistencia a Medicamentos , Metronidazol/farmacología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA