Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Comput Biol ; 13(6): e1005608, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28640810

RESUMEN

Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We demonstrate the power of this approach by inferring a mechanistically motivated, genome-wide model of the Th2 transcription regulatory system, which plays an important role in several immune related diseases.


Asunto(s)
Mapeo Cromosómico/métodos , Modelos Genéticos , Proteoma/metabolismo , Transducción de Señal/fisiología , Programas Informáticos , Células Th2/metabolismo , Algoritmos , Diferenciación Celular/fisiología , Células Cultivadas , Simulación por Computador , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Lenguajes de Programación
3.
Genome Med ; 11(1): 47, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31358043

RESUMEN

BACKGROUND: Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs. METHODS: The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs. RESULTS: We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model. CONCLUSIONS: Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease.


Asunto(s)
Susceptibilidad a Enfermedades , Técnicas de Diagnóstico Molecular , Herencia Multifactorial , Análisis de la Célula Individual , Animales , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/etiología , Biomarcadores , Biología Computacional/métodos , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Perfilación de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Análisis de la Célula Individual/métodos
4.
Cell Rep ; 16(11): 2928-2939, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27626663

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Regulación de la Expresión Génica , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Mapas de Interacción de Proteínas/genética , Adulto , Estudios de Casos y Controles , Proteínas del Líquido Cefalorraquídeo/metabolismo , Quimiotaxis/genética , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Activación de Linfocitos/genética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA