Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Liposome Res ; 34(1): 135-177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37144339

RESUMEN

Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Liposomas , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Lípidos , Portadores de Fármacos
2.
Drug Dev Ind Pharm ; 50(3): 223-235, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305197

RESUMEN

BACKGROUND: Breast cancer (BC) stands as the second-leading cause of mortality among women worldwide. Many chemotherapeutic treatments for BC come with significant adverse effects. Additionally, BC is recognized as one of the most resistant forms of malignancy to treatment. Consequently, there exists a critical need for innovative therapeutic agents that are both highly effective and exhibit reduced toxicity and side effects for patients. Deferasirox (DFX), an iron-chelating drug approved by the FDA for oral use, emerges as a promising contender in the fight against BC proliferation. DFX, primarily administered orally, is utilized to address chronic iron excess resulting from blood transfusions, and it is the inaugural treatment for chronic iron overload syndrome. However, DFX encounters limitations due to its poor water solubility. AIM: This study aimed at incorporating DFX into lipid nanocapsules (DFX-LNCs) followed by investigating the anticancer effect of the DFX nanoform as compared to free DFX in-vitro and on an orthotopic BC mouse model in-vivo. METHODS: The DFX-LNCs was prepared and imaged using TEM and also characterized in terms of particle size (PS), zeta potential (ZP), and polydispersity index (PDI) using DLS. Moreover, drug release, cytotoxicity, and anticancer effect were assessed in-vitro, and in-vivo. RESULTS: The results revealed that DFX-LNCs are more cytotoxic than free DFX with IC50 of 4.417 µg/ml and 16.114 µg/ml, respectively, while the plain LNCs didn't show any cytotoxic effect on the 4T1 cell line (IC50 = 122.797 µg/ml). Besides, the apoptotic effect of DFX-LNCs was more pronounced than that of free DFX, as evidenced by Annexin V/PI staining, increased BAX expression, and decreased expression of BcL-2. Moreover, DFX-LNCs showed a superior antitumor effect in-vivo with potent antioxidant and anti-proliferative effects. CONCLUSION: The newly developed DFX nanoform demonstrated a high potential as a promising therapeutic agent for BC treatment.


Asunto(s)
Neoplasias de la Mama , Sobrecarga de Hierro , Humanos , Femenino , Ratones , Animales , Deferasirox/farmacología , Deferasirox/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Quelantes del Hierro/efectos adversos , Hierro/uso terapéutico , Sobrecarga de Hierro/inducido químicamente , Sobrecarga de Hierro/tratamiento farmacológico
3.
Artículo en Inglés | MEDLINE | ID: mdl-38423705

RESUMEN

Deferasirox is an iron-chelating drug developed by Novartis company for treatment of diseases accompanied by chronic iron overload; such as ß-thalassemia or sickle cell diseases. Owing to its advantages such as high affinity, specificity and wide therapeutic window, it is considered as first line treatment. The current chapter describes the physicochemical characteristics, mode of action, pharmacokinetics, therapeutic applications and synthetic methods for deferasirox. Moreover, it includes Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis for its functional groups. In addition, the selected analytical methods are summarized to aid the analysts in their routine analysis of deferasirox.


Asunto(s)
Benzoatos , Sobrecarga de Hierro , Humanos , Deferasirox/farmacología , Deferasirox/uso terapéutico , Benzoatos/farmacología , Benzoatos/uso terapéutico , Benzoatos/metabolismo , Triazoles/uso terapéutico , Triazoles/farmacocinética , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Quelantes del Hierro/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Hierro/metabolismo , Hierro/uso terapéutico
4.
Int J Biol Macromol ; 280(Pt 4): 135987, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326590

RESUMEN

Uncontrolled hemorrhage remains a critical threat in trauma and surgery. This study developed a novel hemostatic composite by encapsulating Peganum harmala L. seed extract (PH) with known hemostatic properties into lipid nanocapsules (PH-LNCs) and then embedding them within a polyvinyl alcohol-chitosan-polyethylene glycol-glycerol (PVA-CS-PEG-G) matrix. The composite was physically crosslinked via the dual processes of freezing-thawing and thermal crosslinking and exhibited robust mechanical properties reaching 0.434 ± 0.014 MPa and elasticity of 40.685 % ± 4.04. It also demonstrated excellent biocompatibility, surface morphology, physical stability, and ex-vivo skin deposition/permeation were assessed. The characterization of PH-LNCs revealed optimal PH-LNC formation and successful integration into the composite with particle size, zeta potential, and PDI were approximately 45.45 ± 24 nm, -16.3 ± 1.4 mV, and 0.374 ± 0.1, respectively. In vitro studies highlighted enhanced blood clotting and platelet adhesion, while in vivo experiments confirmed superior hemostatic efficacy in a mouse tail amputation model. The composite's soft texture, conformability, and mechanical strength make it a promising candidate for effective traumatic wound management.

5.
Int J Pharm ; 653: 123871, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38301810

RESUMEN

Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.


Asunto(s)
Péptidos , Sarcosina , Sarcosina/análogos & derivados , Péptidos/química , Sarcosina/química , Polímeros , Materiales Biocompatibles , Polietilenglicoles/química
6.
Drug Deliv Transl Res ; 14(5): 1338-1351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37930630

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor that affects many patients diagnosed with hepatic cell inflammation and liver cirrhosis. Targeted polymeric nanocapsules could facilitate the internalization and accumulation of anticancer drugs. Dual-targeted folic acid/lactobionic acid-poly lactic co-glycolic acid nanocapsules (NCs) were prepared and loaded with pterostilbene (PTN) and characterized for their physicochemical properties, as well as in vitro and in vivo anticancer activity. NCs displayed a size of 222 nm, zeta potential of - 16.5 mV, and sustained release for 48 h. The IC50 of PTN NCs (5.87 ± 0.8 µg/mL) was 20 times lower than unencapsulated PTN (121.26 ± 9.42 µg/mL) on HepG2 liver cancer cells owing to the enhanced cellular uptake of the former, as delineated by flow cytometry. In vivo study on HCC-induced animals delineated the superiority of the dual-targeted NCs over the unencapsulated PTN, which significantly reduced the liver markers ALT, AST, and ALP, as well as the tumor-related markers AFP and Bcl2, and elevated the anti-apoptotic marker caspase 3. Furthermore, the NCs significantly reduced the oxidative stress and exhibited almost comparable histological features to the normal group. Therefore, it can be concluded that the dual-ligated folic acid/lactobionic acid nanocapsules can be considered a promising potential treatment option for hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Disacáridos , Neoplasias Hepáticas , Nanocápsulas , Animales , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Polímeros/uso terapéutico , Ácido Fólico , Línea Celular Tumoral
7.
Eur J Pharm Sci ; 171: 106119, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998905

RESUMEN

Lung cancer is characterized by poor prognosis, and is considered a serious disease that causes a significant mortality. The available conventional chemotherapeutic agents suffer from several limitations; hence, new drug molecules are constantly being sought. In the current study, lipid nanovesicles (LNVs) were selected as a colloidal vehicle for encapsulation of the FDA-approved drug; rolapitant (RP), which is used particularly for the treatment of nausea and vomiting, but is repurposed for the treatment of lung cancer in the current work. RP was loaded into various LNVs (liposomes, ethosomes and transethosomes) using the thin film hydration method, and the LNVs were evaluated for particle size, zeta potential, entrapment efficiency (EE%), storage stability and surface morphology. Besides, the in-vitro drug release, in-vitro cytotoxicity on A549 lung cancer cells, nebulization performance using next generation impactor (NGI), and the in-vivo biodistribution behavior were evaluated. The selected ethosomal and transethosomal vesicles displayed a particle size less than 400 nm, a positive charge, and EE% exceeding 90% for RP, with a sustained release pattern over 15 days. The in-vivo biodistribution results proved the high lung deposition potential of RP-LNVs with a considerable safety. Besides, the developed RP-LNVs were able to reach the metastatic organs of lung cancer, hence they were proven promising as a possible treatment modality for lung cancer.


Asunto(s)
Liposomas , Neoplasias Pulmonares , Administración Cutánea , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Tamaño de la Partícula , Compuestos de Espiro , Distribución Tisular
8.
Life Sci ; 305: 120731, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753435

RESUMEN

Breast cancer (BC) is considered the leading cause of mortality and morbidity among adult women worldwide, and it is associated with many genetic or hormonal factors. Despite the advanced therapeutic and theranostic strategies for BC treatment, cancer metastasis and relapse are often observed among patients which lead to therapeutic failure. Accordingly, among the repositioned medication against BC proliferation is neurokinin receptor antagonists and iron chelating agents especially rolapitant HCl (RP) and deferasirox (DFO), respectively. However, RP and DFO are classified as class II with low aqueous solubility. Both drugs were nanoformulated into PEGylated lipid nanocapsules (LNCs) for enhancing their aqueous solubility and augmenting their efficacy. RP-LNCs, DFO-LNCs and their combinations were evaluated according to particle size (PS), zeta potential, polydispersity index (PDI) and surface morphology. Importantly, the antitumor effect of these novel molecules and their nanoforms was evaluated against the suppression of Ehrlich Ascites tumor model using female mice. Results revealed that RP-LNCs, DFO-LNCs and RP/DFO-LNCs exerted PS from 45.23 ± 3.54 to 60.1 ± 3.32 nm with PDI around 0.20 which indicates homogenous particles distribution. Also, RP-LNCs, DFO-LNCs and RP/DFO-LNCs displayed surface charges of +16.6 ± 6.9, -13.3 ± 5.82 and - 20.2 ± 5.40 mV, respectively. The obtained LNCs conferred a high potent cytotoxic effect against MCF7 cancer cells as compared to parent drugs, with IC50 of 10.86 ± 0.89, 3.34 ± 0.99 and 2.24 ± 0.97 µg/mL for RP-LNCs, DFO-LNCs and RP/DFO-LNCs, respectively. The in-vivo pharmacodynamics effect of the developed nano-formulations showed superior antitumor effect for the individual drugs rather than their combinations as compared to the control group. The current study confirmed the potential of RP and DFO nanoforms as promising therapeutic agents for BC treatment.


Asunto(s)
Neoplasias de la Mama , Nanocápsulas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Deferasirox/farmacología , Femenino , Humanos , Lípidos/uso terapéutico , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Polietilenglicoles/uso terapéutico , Compuestos de Espiro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA