Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Pathog ; 19(12): e1011875, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060607

RESUMEN

Cancer chemotherapeutics kill rapidly dividing cells, which includes cells of the immune system. The resulting neutropenia predisposes patients to infection, which delays treatment and is a major cause of morbidity and mortality. To tackle this problem, we have isolated several compounds that inhibit bacterial DNA repair, alone they are non-toxic, however in combination with DNA damaging anti-cancer drugs, they prevent bacterial growth. These compounds were identified through screening of an FDA-approved drug library in the presence of the anti-cancer compound cisplatin. Using a series of triage tests, the screen was reduced to a handful of drugs that were tested for specific activity against bacterial nucleotide excision DNA repair (NER). Five compounds emerged, of which three possess promising antimicrobial properties including cell penetrance, and the ability to block replication in a multi-drug resistant clinically relevant E. coli strain. This study suggests that targeting NER could offer a new therapeutic approach tailor-made for infections in cancer patients, by combining cancer chemotherapy with an adjuvant that targets DNA repair.


Asunto(s)
Antiinfecciosos , Neoplasias , Humanos , ADN Bacteriano , Escherichia coli/genética , Reparación del ADN , Cisplatino/farmacología , Cisplatino/uso terapéutico , Daño del ADN , Neoplasias/tratamiento farmacológico
2.
Nucleic Acids Res ; 51(7): e39, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36861323

RESUMEN

Single-molecule characterization of protein-DNA dynamics provides unprecedented mechanistic details about numerous nuclear processes. Here, we describe a new method that rapidly generates single-molecule information with fluorescently tagged proteins isolated from nuclear extracts of human cells. We demonstrated the wide applicability of this novel technique on undamaged DNA and three forms of DNA damage using seven native DNA repair proteins and two structural variants, including: poly(ADP-ribose) polymerase (PARP1), heterodimeric ultraviolet-damaged DNA-binding protein (UV-DDB), and 8-oxoguanine glycosylase 1 (OGG1). We found that PARP1 binding to DNA nicks is altered by tension, and that UV-DDB did not act as an obligate heterodimer of DDB1 and DDB2 on UV-irradiated DNA. UV-DDB bound to UV photoproducts with an average lifetime of 39 seconds (corrected for photobleaching, τc), whereas binding lifetimes to 8-oxoG adducts were < 1 second. Catalytically inactive OGG1 variant K249Q bound oxidative damage 23-fold longer than WT OGG1, at 47 and 2.0 s, respectively. By measuring three fluorescent colors simultaneously, we also characterized the assembly and disassembly kinetics of UV-DDB and OGG1 complexes on DNA. Hence, the SMADNE technique represents a novel, scalable, and universal method to obtain single-molecule mechanistic insights into key protein-DNA interactions in an environment containing physiologically-relevant nuclear proteins.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Daño del ADN , ADN/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Rayos Ultravioleta
3.
Mol Cell ; 64(2): 376-387, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720644

RESUMEN

Nucleotide excision repair (NER) is an evolutionarily conserved mechanism that processes helix-destabilizing and/or -distorting DNA lesions, such as UV-induced photoproducts. Here, we investigate the dynamic protein-DNA interactions during the damage recognition step using single-molecule fluorescence microscopy. Quantum dot-labeled Rad4-Rad23 (yeast XPC-RAD23B ortholog) forms non-motile complexes or conducts a one-dimensional search via either random diffusion or constrained motion. Atomic force microcopy analysis of Rad4 with the ß-hairpin domain 3 (BHD3) deleted reveals that this motif is non-essential for damage-specific binding and DNA bending. Furthermore, we find that deletion of seven residues in the tip of ß-hairpin in BHD3 increases Rad4-Rad23 constrained motion at the expense of stable binding at sites of DNA lesions, without diminishing cellular UV resistance or photoproduct repair in vivo. These results suggest a distinct intermediate in the damage recognition process during NER, allowing dynamic DNA damage detection at a distance.


Asunto(s)
Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Daño del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Puntos Cuánticos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Imagen Individual de Molécula , Rayos Ultravioleta
4.
J Biol Chem ; 298(8): 102229, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787376

RESUMEN

The AP-1 transcription factor family crucially regulates progression of the cell cycle, as well as playing roles in proliferation, differentiation, and the stress response. The two best described AP-1 family members, cFos and cJun, are known to dimerize to form a functional AP-1 heterodimer that binds to a consensus response element sequence. Although cJun can also homodimerize and bind to DNA, the canonical view is that cFos cannot bind DNA without heterodimerizing with cJun. Here, we show that cFos can actually bind to DNA in the absence of cJun in vitro. Using dual color single molecule imaging of cFos alone, we directly visualize binding to and movement on DNA. Of all these DNA-bound proteins, detailed analysis suggested 30 to 46% were homodimers. Furthermore, we constructed fluorescent protein fusions of cFos and cJun for Förster resonance energy transfer experiments. These constructs indicated complete dimerization of cJun, but although cFos could dimerize, its extent was reduced. Finally, to provide orthogonal confirmation of cFos binding to DNA, we performed bulk-phase circular dichroism experiments that showed clear structural changes in DNA; these were found to be specific to the AP-1 consensus sequence. Taken together, our results clearly show cFos can interact with DNA both as monomers and dimers independently of its archetypal partner, cJun.


Asunto(s)
Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-jun , Factor de Transcripción AP-1 , Dicroismo Circular , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
5.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33166411

RESUMEN

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ARN/ultraestructura , Factor de Transcripción TFIIH/ultraestructura , Sitios de Unión/efectos de la radiación , Microscopía por Crioelectrón , Daño del ADN/efectos de la radiación , ADN Helicasas/genética , ADN Helicasas/ultraestructura , ADN de Cadena Simple/genética , ADN de Cadena Simple/efectos de la radiación , ADN de Cadena Simple/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas de Unión al ARN/genética , Imagen Individual de Molécula , Factor de Transcripción TFIIH/genética , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/ultraestructura
6.
Proc Natl Acad Sci U S A ; 116(14): 6828-6835, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30877248

RESUMEN

Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility.


Asunto(s)
Proteínas Portadoras/química , Simulación de Dinámica Molecular , Miosinas/química , Tropomiosina/química , Animales , Proteínas Portadoras/metabolismo , Pollos , Humanos , Contracción Miocárdica , Miocardio/química , Miocardio/metabolismo , Miosinas/metabolismo , Unión Proteica , Dominios Proteicos , Tropomiosina/metabolismo
7.
FASEB J ; 33(1): 763-769, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020831

RESUMEN

Nucleotide excision repair (NER) protects cells against diverse types of DNA damage, principally UV irradiation. In Escherichia coli, damage is recognized by 2 key enzymes: UvrA and UvrB. Despite extensive investigation, the role of UvrA's 2 ATPase domains in NER remains elusive. Combining single-molecule fluorescence microscopy and classic biochemical methods, we have investigated the role of nucleotide binding in UvrA's kinetic cycle. Measurement of UvrA's steady-state ATPase activity shows it is stimulated upon binding DNA ( kcat 0.71-1.07/s). Despite UvrA's ability to discriminate damage, we find UV-damaged DNA does not alter the steady-state ATPase. To understand how damage affects UvrA, we studied its binding to DNA under various nucleotide conditions at the single molecule level. We have found that both UV damage and nucleotide cofactors affect the attached lifetime of UvrA. In the presence of ATP and UV damage, the lifetime is significantly greater compared with undamaged DNA. To reconcile these observations, we suggest that UvrA uses negative cooperativity between its ATPase sites that is gated by damage recognition. Only in the presence of damage is the second site activated, most likely in a sequential manner.-Barnett, J. T., Kad, N. M. Understanding the coupling between DNA damage detection and UvrA's ATPase using bulk and single molecule kinetics.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Daño del ADN , Reparación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Análisis de la Célula Individual/métodos , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Imagen Molecular/métodos
8.
Nucleic Acids Res ; 46(3): 1256-1265, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29240933

RESUMEN

Nucleotide excision repair (NER) is the primary mechanism for removal of ultraviolet light (UV)-induced DNA photoproducts and is mechanistically conserved across all kingdoms of life. Bacterial NER involves damage recognition by UvrA2 and UvrB, followed by UvrC-mediated incision either side of the lesion. Here, using a combination of in vitro and in vivo single-molecule studies we show that a UvrBC complex is capable of lesion identification in the absence of UvrA. Single-molecule analysis of eGFP-labelled UvrB and UvrC in living cells showed that UV damage caused these proteins to switch from cytoplasmic diffusion to stable complexes on DNA. Surprisingly, ectopic expression of UvrC in a uvrA deleted strain increased UV survival. These data provide evidence for a previously unrealized mechanism of survival that can occur through direct lesion recognition by a UvrBC complex.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , Reparación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efectos de la radiación , Adenosina Trifosfatasas/deficiencia , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/deficiencia , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Viabilidad Microbiana/genética , Viabilidad Microbiana/efectos de la radiación , Unión Proteica , Imagen Individual de Molécula/métodos , Rayos Ultravioleta
9.
Mol Cell ; 37(5): 702-13, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20227373

RESUMEN

How DNA repair proteins sort through a genome for damage is one of the fundamental unanswered questions in this field. To address this problem, we uniquely labeled bacterial UvrA and UvrB with differently colored quantum dots and visualized how they interacted with DNA individually or together using oblique-angle fluorescence microscopy. UvrA was observed to utilize a three-dimensional search mechanism, binding transiently to the DNA for short periods (7 s). UvrA also was observed jumping from one DNA molecule to another over approximately 1 microm distances. Two UvrBs can bind to a UvrA dimer and collapse the search dimensionality of UvrA from three to one dimension by inducing a substantial number of UvrAB complexes to slide along the DNA. Three types of sliding motion were characterized: random diffusion, paused motion, and directed motion. This UvrB-induced change in mode of searching permits more rapid and efficient scanning of the genome for damage.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Puntos Cuánticos , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/química , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Multimerización de Proteína
10.
Nucleic Acids Res ; 44(13): 6363-76, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298259

RESUMEN

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.


Asunto(s)
Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Secuencias AT-Hook/genética , Cromátides/genética , Cromátides/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Microscopía de Fuerza Atómica , Mitosis/genética , Proteínas Nucleares/metabolismo , Telómero/ultraestructura , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
11.
Nature ; 539(7630): 498-499, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27851733
12.
J Biol Chem ; 290(4): 1915-25, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25429108

RESUMEN

Contraction of striated muscle is tightly regulated by the release and sequestration of calcium within myocytes. At the molecular level, calcium modulates myosin's access to the thin filament. Once bound, myosin is hypothesized to potentiate the binding of further myosins. Here, we directly image single molecules of myosin binding to and activating thin filaments. Using this approach, the cooperative binding of myosin along thin filaments has been quantified. We have found that two myosin heads are required to laterally activate a regulatory unit of thin filament. The regulatory unit is found to be capable of accommodating 11 additional myosins. Three thin filament activation states possessing differential myosin binding capacities are also visible. To describe this system, we have formulated a simple chemical kinetic model of cooperative activation that holds across a wide range of solution conditions. The stochastic nature of activation is strongly highlighted by data obtained in sub-optimal activation conditions where the generation of activation waves and their catastrophic collapse can be observed. This suggests that the thin filament has the potential to be turned fully on or off in a binary fashion.


Asunto(s)
Citoesqueleto de Actina/química , Colorantes Fluorescentes/química , Miosinas/química , Actinas/química , Adenosina Trifosfato/química , Calcio/química , Humanos , Hidrólisis , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Miosina Tipo II/química , Distribución Normal , Unión Proteica , Sarcómeros/metabolismo , Procesos Estocásticos , Tropomiosina/química , Troponina/química
13.
J Biol Chem ; 290(12): 7426-35, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25616660

RESUMEN

Aggregation of α-synuclein (α-syn) into toxic fibrils is a pathogenic hallmark of Parkinson disease (PD). Studies have focused largely on residues 71-82, yet most early-onset mutations are located between residues 46 and 53. A semirationally designed 209,952-member library based entirely on this region was constructed, containing all wild-type residues and changes associated with early-onset PD. Intracellular cell survival screening and growth competition isolated a 10-residue peptide antagonist that potently inhibits α-syn aggregation and associated toxicity at a 1:1 stoichiometry. This was verified using continuous growth measurements and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity studies. Atomic force microscopy and circular dichroism on the same samples showed a random-coil structure and no oligomers. A new region of α-syn for inhibitor targeting has been highlighted, together with the approach of using a semirational design and intracellular screening. The peptides can then be used as candidates for modification in drugs capable of slowing or even preventing the onset of PD.


Asunto(s)
Biblioteca de Péptidos , Péptidos/farmacología , alfa-Sinucleína/antagonistas & inhibidores , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Dicroismo Circular , Cartilla de ADN , Cuerpos de Lewy/metabolismo , Microscopía de Fuerza Atómica , Enfermedad de Parkinson/metabolismo , Péptidos/química , Reacción en Cadena de la Polimerasa , alfa-Sinucleína/metabolismo
14.
PLoS Comput Biol ; 11(11): e1004599, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26536123

RESUMEN

Muscle contracts due to ATP-dependent interactions of myosin motors with thin filaments composed of the proteins actin, troponin, and tropomyosin. Contraction is initiated when calcium binds to troponin, which changes conformation and displaces tropomyosin, a filamentous protein that wraps around the actin filament, thereby exposing myosin binding sites on actin. Myosin motors interact with each other indirectly via tropomyosin, since myosin binding to actin locally displaces tropomyosin and thereby facilitates binding of nearby myosin. Defining and modeling this local coupling between myosin motors is an open problem in muscle modeling and, more broadly, a requirement to understanding the connection between muscle contraction at the molecular and macro scale. It is challenging to directly observe this coupling, and such measurements have only recently been made. Analysis of these data suggests that two myosin heads are required to activate the thin filament. This result contrasts with a theoretical model, which reproduces several indirect measurements of coupling between myosin, that assumes a single myosin head can activate the thin filament. To understand this apparent discrepancy, we incorporated the model into stochastic simulations of the experiments, which generated simulated data that were then analyzed identically to the experimental measurements. By varying a single parameter, good agreement between simulation and experiment was established. The conclusion that two myosin molecules are required to activate the thin filament arises from an assumption, made during data analysis, that the intensity of the fluorescent tags attached to myosin varies depending on experimental condition. We provide an alternative explanation that reconciles theory and experiment without assuming that the intensity of the fluorescent tags varies.


Asunto(s)
Modelos Biológicos , Músculo Esquelético/fisiología , Miosinas/química , Miosinas/metabolismo , Algoritmos , Biología Computacional , Simulación por Computador , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Humanos , Quimografía , Unión Proteica
15.
Nucleic Acids Res ; 42(4): 2493-504, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24271387

RESUMEN

Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.


Asunto(s)
ADN/metabolismo , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , ADN/química , Difusión , Unión Proteica , Estructura Terciaria de Proteína , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/química , Proteína 2 de Unión a Repeticiones Teloméricas/química
17.
Nucleic Acids Res ; 41(9): 4901-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23511970

RESUMEN

Nucleotide excision DNA repair is mechanistically conserved across all kingdoms of life. In prokaryotes, this multi-enzyme process requires six proteins: UvrA-D, DNA polymerase I and DNA ligase. To examine how UvrC locates the UvrB-DNA pre-incision complex at a site of damage, we have labeled UvrB and UvrC with different colored quantum dots and quantitatively observed their interactions with DNA tightropes under a variety of solution conditions using oblique angle fluorescence imaging. Alone, UvrC predominantly interacts statically with DNA at low salt. Surprisingly, however, UvrC and UvrB together in solution bind to form the previously unseen UvrBC complex on duplex DNA. This UvrBC complex is highly motile and engages in unbiased one-dimensional diffusion. To test whether UvrB makes direct contact with the DNA in the UvrBC-DNA complex, we investigated three UvrB mutants: Y96A, a ß-hairpin deletion and D338N. These mutants affected the motile properties of the UvrBC complex, indicating that UvrB is in intimate contact with the DNA when bound to UvrC. Given the in vivo excess of UvrB and the abundance of UvrBC in our experiments, this newly identified complex is likely to be the predominant form of UvrC in the cell.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , ADN/ultraestructura , ADN Helicasas/química , Proteínas de Unión al ADN/química , Difusión , Endodesoxirribonucleasas/química , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Puntos Cuánticos
18.
Biochemistry ; 53(13): 2101-11, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24601543

RESUMEN

The aggregation of ß-amyloid (Aß) into toxic oligomers is a hallmark of Alzheimer's disease pathology. Here we present a novel approach for the development of peptides capable of preventing amyloid aggregation based upon the previous selection of natural all-l peptides that bind Aß1-42. Using an intracellular selection system, successful library members were further screened via competition selection to identify the most effective peptides capable of reducing amyloid levels. To circumvent potential issues arising from stability and protease action for these structures, we have replaced all l residues with d residues and inverted the sequence. These retro-inverso (RI) peptide analogues therefore encompass reversed sequences that maintain the overall topological order of the native peptides. Our results demonstrate that efficacy in blocking and reversing amyloid formation is maintained while introducing desirable properties to the peptides. Thioflavin-T assays, circular dichroism, and oblique angle fluorescence microscopy collectively indicate that RI peptides can reduce amyloid load, while 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays demonstrate modest reductions in cell toxicity. These conclusions are reinforced using Drosophila melanogaster studies to monitor pupal hatching rates and fly locomotor activity in the presence of RI peptides delivered via RI-trans-activating transcriptional activator peptide fusions. We demonstrate that the RI-protein fragment complementation assay approach can be used as a generalized method for deriving Aß-interacting peptides. This approach has subsequently led to several peptide candidates being further explored as potential treatments for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Animales , Dicroismo Circular , Modelos Animales de Enfermedad , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Actividad Motora/efectos de los fármacos , Células PC12 , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Biblioteca de Péptidos , Péptidos/química , Péptidos/aislamiento & purificación , Placa Amiloide/tratamiento farmacológico , Estructura Secundaria de Proteína , Ratas
19.
Protein Sci ; 33(4): e4948, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501485

RESUMEN

Increasing antimicrobial drug resistance represents a global existential threat. Infection is a particular problem in immunocompromised individuals, such as patients undergoing cancer chemotherapy, due to the targeting of rapidly dividing cells by antineoplastic agents. We recently developed a strategy that targets bacterial nucleotide excision DNA repair (NER) to identify compounds that act as antimicrobial sensitizers specific for patients undergoing cancer chemotherapy. Building on this, we performed a virtual drug screening of a ~120,000 compound library against the key NER protein UvrA. From this, numerous target compounds were identified and of those a candidate compound, Bemcentinib (R428), showed a strong affinity toward UvrA. This NER protein possesses four ATPase sites in its dimeric state, and we found that Bemcentinib could inhibit UvrA's ATPase activity by ~90% and also impair its ability to bind DNA. As a result, Bemcentinib strongly diminishes NER's ability to repair DNA in vitro. To provide a measure of in vivo activity we discovered that the growth of Escherichia coli MG1655 was significantly inhibited when Bemcentinib was combined with the DNA damaging agent 4-NQO, which is analogous to UV. Using the clinically relevant DNA-damaging antineoplastic cisplatin in combination with Bemcentinib against the urological sepsis-causing E. coli strain EC958 caused complete growth inhibition. This study offers a novel approach for the potential development of new compounds for use as adjuvants in antineoplastic therapy.


Asunto(s)
Antineoplásicos , Benzocicloheptenos , Proteínas de Escherichia coli , Neoplasias , Triazoles , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Reparación del ADN , Daño del ADN , Antineoplásicos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ADN/metabolismo , Adenosina Trifosfatasas/metabolismo
20.
Nucleic Acids Res ; 39(17): 7487-98, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21666255

RESUMEN

Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix-hairpin-helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe(111) insertion.


Asunto(s)
ADN-Formamidopirimidina Glicosilasa/química , ADN/química , Desoxirribonucleasa (Dímero de Pirimidina)/química , Proteínas de Escherichia coli/química , ADN/metabolismo , Daño del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Difusión , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Concentración Osmolar , Fenilalanina/química , Puntos Cuánticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA