Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell ; 52(3): 314-24, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24207025

RESUMEN

Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.


Asunto(s)
Histonas/genética , Lisina/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Acetilación , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/biosíntesis , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Genes fos/genética , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
2.
J Biol Chem ; 291(31): 16240-8, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27235396

RESUMEN

The HIV-1 transactivator protein Tat is a critical regulator of HIV transcription primarily enabling efficient elongation of viral transcripts. Its interactions with RNA and various host factors are regulated by ordered, transient post-translational modifications. Here, we report a novel Tat modification, monomethylation at lysine 71 (K71). We found that Lys-71 monomethylation (K71me) is catalyzed by KMT7, a methyltransferase that also targets lysine 51 (K51) in Tat. Using mass spectrometry, in vitro enzymology, and modification-specific antibodies, we found that KMT7 monomethylates both Lys-71 and Lys-51 in Tat. K71me is important for full Tat transactivation, as KMT7 knockdown impaired the transcriptional activity of wild type (WT) Tat but not a Tat K71R mutant. These findings underscore the role of KMT7 as an important monomethyltransferase regulating HIV transcription through Tat.


Asunto(s)
VIH-1/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células Jurkat , Lisina/genética , Lisina/metabolismo , Metilación , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
3.
J Biol Chem ; 287(2): 1090-9, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22084242

RESUMEN

The positive transcription elongation factor b (P-TEFb) exists in two forms in cells as follows: an inactive form where the core components cyclin T1 and CDK9 are incorporated in the 7SK small nuclear ribonucleoprotein complex containing the inhibitory molecule HEXIM1, and an active form, part of which associates with the bromodomain-containing protein BRD4. Here, we define a novel interaction between P-TEFb and BRD4 involving tri-acetylated cyclin T1 (acK380, acK386, and acK309) and the second bromodomain in BRD4. This interaction is observed with the short splice variant of BRD4 (amino acids 1-722) lacking a previously defined C-terminal P-TEFb-interacting domain (PID). Notably, P-TEFb complexes associated with short BRD4 contain HEXIM1 and 7SK snRNA, implicating the PID in the liberation of P-TEFb from the 7SK small nuclear ribonucleoprotein complex (7SK snPNP). Overexpression of the PID alone in cells dissociates HEXIM1 and 7SK snRNA from P-TEFb, but it is not sufficient to activate P-TEFb-dependent transcription of the HIV LTR. Our data support a model where two BRD4 domains, the second bromodomain and the PID, bind P-TEFb and are required for full transcriptional activation of P-TEFb response genes.


Asunto(s)
Proteínas Nucleares/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Proteínas de Ciclo Celular , Ciclina T/genética , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Duplicado del Terminal Largo de VIH/fisiología , Células HeLa , Humanos , Proteínas Nucleares/genética , Factor B de Elongación Transcripcional Positiva/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Factores de Transcripción/genética
4.
EMBO J ; 28(10): 1407-17, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19387490

RESUMEN

The elongation competence of the RNA polymerase II complex is critically dependent on the positive transcription elongation factor b (P-TEFb). P-TEFb exists in two forms in cells, an active form composed of cyclin T1 and CDK9 and an inactive form, in which cyclin T1/CDK9 is sequestered by Hexim1 and 7SK snRNA. Here, we report that partitioning of active and inactive P-TEFb is regulated by acetylation of cyclin T1. Cyclin T1 acetylation triggers dissociation of Hexim1 and 7SK snRNA from cyclin T1/CDK9 and activates the transcriptional activity of P-TEFb. This activation is lost in P-TEFb complexes containing cyclin T1 that can no longer be acetylated. An acetylation-deficient cyclin T1 mutant dominantly suppresses NF-kappaB-mediated activation of the interleukin-8 promoter but continues to synergize normally with the HIV Tat protein to transactivate the HIV long terminal repeat. These findings support the model that acetylation of cyclin T1 serves as a physiological switch that liberates P-TEFb from its endogenous inhibitors Hexim1 and 7SK snRNA, but is not required for the cooperative action with HIV Tat.


Asunto(s)
Ciclinas/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Acetilación , Secuencia de Aminoácidos , Línea Celular , Ciclina T , Quinasa 9 Dependiente de la Ciclina/metabolismo , Ciclinas/genética , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Unión Proteica , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
5.
PLoS Pathog ; 7(8): e1002184, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21876670

RESUMEN

The essential transactivator function of the HIV Tat protein is regulated by multiple posttranslational modifications. Although individual modifications are well characterized, their crosstalk and dynamics of occurrence during the HIV transcription cycle remain unclear.We examine interactions between two critical modifications within the RNA-binding domain of Tat: monomethylation of lysine 51 (K51) mediated by Set7/9/KMT7, an early event in the Tat transactivation cycle that strengthens the interaction of Tat with TAR RNA, and acetylation of lysine 50 (K50) mediated by p300/KAT3B, a later process that dissociates the complex formed by Tat, TAR RNA and the cyclin T1 subunit of the positive transcription elongation factor b (P-TEFb). We find K51 monomethylation inhibited in synthetic Tat peptides carrying an acetyl group at K50 while acetylation can occur in methylated peptides, albeit at a reduced rate. To examine whether Tat is subject to sequential monomethylation and acetylation in cells, we performed mass spectrometry on immunoprecipitated Tat proteins and generated new modification-specific Tat antibodies against monomethylated/acetylated Tat. No bimodified Tat protein was detected in cells pointing to a demethylation step during the Tat transactivation cycle. We identify lysine-specific demethylase 1 (LSD1/KDM1) as a Tat K51-specific demethylase, which is required for the activation of HIV transcription in latently infected T cells. LSD1/KDM1 and its cofactor CoREST associates with the HIV promoter in vivo and activate Tat transcriptional activity in a K51-dependent manner. In addition, small hairpin RNAs directed against LSD1/KDM1 or inhibition of its activity with the monoamine oxidase inhibitor phenelzine suppresses the activation of HIV transcription in latently infected T cells.Our data support the model that a LSD1/KDM1/CoREST complex, normally known as a transcriptional suppressor, acts as a novel activator of HIV transcription through demethylation of K51 in Tat. Small molecule inhibitors of LSD1/KDM1 show therapeutic promise by enforcing HIV latency in infected T cells.


Asunto(s)
Histona Demetilasas/metabolismo , Transcripción Genética/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Acetilación , Animales , Epigénesis Genética/fisiología , Genes Virales/efectos de los fármacos , Histona Demetilasas/antagonistas & inhibidores , Metilación , Fenelzina/farmacología , Factor B de Elongación Transcripcional Positiva/metabolismo , Conejos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/inmunología
6.
STAR Protoc ; 4(4): 102687, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979180

RESUMEN

A critical virus-encoded regulator of HIV-1 transcription is the Tat protein, which is required to potently activate transcription. Tat is regulated by a wide variety of post-translational modifications. This protocol describes an in vitro assay to study Tat methylation. We describe steps for incorporation of radioactive methyl groups into Tat protein, visualization by gel analysis, Coomassie blue stain, gel drying, and detection by autoradiography. This protocol can also be used to assess methylation in other proteins such as histones. For complete details on the use and execution of this protocol, please refer to Boehm et al. (2023).1.


Asunto(s)
VIH-1 , VIH-1/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Histonas/metabolismo
7.
J Neurosci ; 28(47): 12305-17, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19020024

RESUMEN

The aggregation of abnormally folded proteins is a defining feature of neurodegenerative disease, but it has not previously been possible to assess the conformation of these proteins in a physiologically relevant context, before they form morphologically recognizable aggregates. We now describe FRET-based reporters for the conformation of alpha-synuclein, a protein central to the pathogenesis of Parkinson's disease (PD). Characterization in vitro shows that alpha-synuclein adopts a relatively "closed" conformation in solution that converts to "open" on membrane binding. In living cells, the closed conformation predominates. In neurons, however, cell bodies contain a much larger proportion of the open conformation than synaptic boutons. To account for these differences, we also used the reporters to characterize the interaction with native membranes. We find that the conformation of alpha-synuclein responds selectively to mitochondria, indicating a direct link between alpha-synuclein and an organelle strongly implicated in the pathogenesis of PD.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Mitocondrias/metabolismo , Neuronas/ultraestructura , alfa-Sinucleína/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos , Lípidos , Hígado/ultraestructura , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Sustancias Macromoleculares , Proteínas de Transporte de Membrana/metabolismo , Mesencéfalo/citología , Ratones , Microscopía , Mutagénesis Sitio-Dirigida/métodos , Fotoblanqueo , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Transfección/métodos , alfa-Sinucleína/genética
8.
PLoS Biol ; 3(2): e41, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15719057

RESUMEN

The human immunodeficiency virus (HIV) Tat protein is acetylated by the transcriptional coactivator p300, a necessary step in Tat-mediated transactivation. We report here that Tat is deacetylated by human sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent class III protein deacetylase in vitro and in vivo. Tat and SIRT1 coimmunoprecipitate and synergistically activate the HIV promoter. Conversely, knockdown of SIRT1 via small interfering RNAs or treatment with a novel small molecule inhibitor of the SIRT1 deacetylase activity inhibit Tat-mediated transactivation of the HIV long terminal repeat. Tat transactivation is defective in SIRT1-null mouse embryonic fibroblasts and can be rescued by expression of SIRT1. These results support a model in which cycles of Tat acetylation and deacetylation regulate HIV transcription. SIRT1 recycles Tat to its unacetylated form and acts as a transcriptional coactivator during Tat transactivation.


Asunto(s)
Productos del Gen tat/metabolismo , VIH/genética , Histona Desacetilasas/genética , Sirtuinas/genética , Transcripción Genética , Acetilación , Secuencia de Bases , Cartilla de ADN , Regulación Viral de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Sirtuina 1 , Productos del Gen tat del Virus de la Inmunodeficiencia Humana
9.
Novartis Found Symp ; 259: 182-93; discussion 193-6, 223-5, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15171254

RESUMEN

The HIV transcriptional activator Tat enhances the processivity of RNA polymerase II by recruiting the CyclinT1/CDK9 complex to the TAR RNA element. In addition, Tat synergizes with the histone acetyltransferase p300 and is acetylated by p300 at a single lysine residue (K50) in the TAR RNA binding domain. We have recently reported that this post-translational modification is necessary for the interaction and transcriptional synergy of Tat with the transcriptional coactivator PCAF. We have further studied the relevance of Tat acetylation during HIV transcription and generated antibodies specific for acetylated Tat (AcTat). Microinjection of anti-AcTat antibodies inhibited Tat-mediated transactivation in cells. Similarly, the specific p300 inhibitor Lys-CoA and short inhibitory RNAs specific for p300 suppressed Tat transcriptional activity. Full-length synthetic AcTat bound to TAR RNA and CyclinT1 with high affinity, but formation of the Tat-TAR-CyclinT1 ternary complex was inhibited when K50 was acetylated. Our data collectively show that Tat acetylation by p300 defines a critical step in Tat transactivation that serves to disrupt the Tat/TAR/CyclinT1 complex and helps in recruiting PCAF to the elongating RNA polymerase II.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Productos del Gen tat/metabolismo , VIH/genética , Transcripción Genética/fisiología , Acetilación , VIH/fisiología , Histona Acetiltransferasas , Humanos , Factores de Transcripción , Factores de Transcripción p300-CBP , Productos del Gen tat del Virus de la Inmunodeficiencia Humana
10.
Nat Med ; 16(11): 1295-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20935628

RESUMEN

Hepatitis C virus (HCV) infection is closely tied to the lipid metabolism of liver cells. Here we identify the triglyceride-synthesizing enzyme diacylglycerol acyltransferase-1 (DGAT1) as a key host factor for HCV infection. DGAT1 interacts with the viral nucleocapsid core and is required for the trafficking of core to lipid droplets. Inhibition of DGAT1 activity or RNAi-mediated knockdown of DGAT1 severely impairs infectious virion production, implicating DGAT1 as a new target for antiviral therapy.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Hepacivirus/fisiología , Virión/fisiología , Ensamble de Virus/fisiología , Células HEK293 , Humanos , Inmunoprecipitación , Transfección
11.
Cell Host Microbe ; 7(3): 234-44, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20227666

RESUMEN

The Tat protein of HIV-1 plays an essential role in HIV gene expression by promoting efficient elongation of viral transcripts. Posttranslational modifications of Tat fine-tune interactions of Tat with cellular cofactors and TAR RNA, a stem-loop structure at the 5' ends of viral transcripts. Here, we identify the lysine methyltransferase Set7/9 (KMT7) as a coactivator of HIV transcription. Set7/9-KMT7 associates with the HIV promoter in vivo and monomethylates lysine 51, a highly conserved residue located in the RNA-binding domain of Tat. Knockdown of Set7/9-KMT7 suppresses Tat transactivation of the HIV promoter, but does not affect the transcriptional activity of methylation-deficient Tat (K51A). Set7/9-KMT7 binds TAR RNA by itself and in complex with Tat and the positive transcription elongation factor P-TEFb. Our findings uncover a positive role for Set7/9-KMT7 and Tat methylation during early steps of the Tat transactivation cycle.


Asunto(s)
Duplicado del Terminal Largo de VIH , VIH-1/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Interacciones Huésped-Patógeno , ARN Viral/metabolismo , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Factor B de Elongación Transcripcional Positiva/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional
12.
PLoS One ; 2(1): e151, 2007 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-17225856

RESUMEN

The transcriptional activity of the integrated HIV provirus is dependent on the chromatin organization of the viral promoter and the transactivator Tat. Tat recruits the cellular pTEFb complex and interacts with several chromatin-modifying enzymes, including the histone acetyltransferases p300 and PCAF. Here, we examined the interaction of Tat with activation-dependent histone kinases, including the p90 ribosomal S6 kinase 2 (RSK2). Dominant-negative RSK2 and treatment with a small-molecule inhibitor of RSK2 kinase activity inhibited the transcriptional activity of Tat, indicating that RSK2 is important for Tat function. Reconstitution of RSK2 in cells from subjects with a genetic defect in RSK2 expression (Coffin-Lowry syndrome) enhanced Tat transactivation. Tat interacted with RSK2 and activated RSK2 kinase activity in cells. Both properties were lost in a mutant Tat protein (F38A) that is deficient in HIV transactivation. Our data identify a novel reciprocal regulation of Tat and RSK2 function, which might serve to induce early changes in the chromatin organization of the HIV LTR.


Asunto(s)
Productos del Gen tat/metabolismo , VIH-1/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Animales , Línea Celular , Síndrome de Coffin-Lowry/enzimología , Síndrome de Coffin-Lowry/genética , Productos del Gen tat/genética , Infecciones por VIH/genética , VIH-1/genética , Histonas/metabolismo , Humanos , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Secuencias Repetidas Terminales/genética , Activación Transcripcional , Replicación Viral/genética
13.
J Virol ; 78(15): 7958-68, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15254168

RESUMEN

The hepatitis C virus (HCV) core protein represents the first 191 amino acids of the viral precursor polyprotein and is cotranslationally inserted into the membrane of the endoplasmic reticulum (ER). Processing at position 179 by a recently identified intramembrane signal peptide peptidase leads to the generation and potential cytosolic release of a 179-amino-acid matured form of the core protein. Using confocal microscopy, we observed that a fraction of the mature core protein colocalized with mitochondrial markers in core-expressing HeLa cells and in Huh-7 cells containing the full-length HCV replicon. Subcellular fractionation confirmed this observation and showed that the core protein associates with purified mitochondrial fractions devoid of ER contaminants. The core protein also fractionated with mitochondrion-associated membranes, a site of physical contact between the ER and mitochondria. Using immunoelectron microscopy and in vitro mitochondrial import assays, we showed that the core protein is located on the mitochondrial outer membrane. A stretch of 10 amino acids within the hydrophobic C terminus of the processed core protein conferred mitochondrial localization when it was fused to green fluorescent protein. The location of the core protein in the outer mitochondrial membrane suggests that it could modulate apoptosis or lipid transfer, both of which are associated with this subcellular compartment, during HCV infection.


Asunto(s)
Hepacivirus/química , Mitocondrias/metabolismo , Proteínas del Núcleo Viral/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas del Núcleo Viral/química
14.
Mol Cell ; 12(1): 167-76, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12887902

RESUMEN

The HIV transcriptional activator Tat is acetylated by p300 at a single lysine residue in the TAR RNA binding domain. We have generated monoclonal and polyclonal antibodies specific for the acetylated form of Tat (AcTat). Microinjection of anti-AcTat antibodies inhibited Tat-mediated transactivation in cells. Similarly, the p300 inhibitor Lys-CoA and siRNA specific for p300 suppressed Tat transcriptional activity. Full-length synthetic AcTat bound to TAR RNA with the same affinity as unacetylated Tat, but formation of a Tat-TAR-CyclinT1 ternary complex was completely inhibited in the presence of AcTat. We propose that Tat acetylation may help in dissociating the Tat cofactor CyclinT1 from TAR RNA and serve to transfer Tat onto the elongating RNA polymerase II.


Asunto(s)
Ciclinas/genética , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , VIH-1/genética , Activación Transcripcional/genética , Acetilación , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Anticuerpos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina T , Productos del Gen tat/antagonistas & inhibidores , Duplicado del Terminal Largo de VIH/genética , Células HeLa , Histona Acetiltransferasas , Humanos , Células Jurkat , Sustancias Macromoleculares , Modelos Moleculares , ARN Polimerasa II/biosíntesis , ARN Polimerasa II/genética , ARN Interferente Pequeño/farmacología , Factores de Transcripción , Activación Transcripcional/efectos de los fármacos , Factores de Transcripción p300-CBP , Productos del Gen tat del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA