Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 572(7768): 220-223, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316202

RESUMEN

The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy1-3 (microARPES) applied to two-dimensional van der Waals heterostructures4 affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts-approaching the exciton energy-as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.

2.
Nano Lett ; 21(24): 10532-10537, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851122

RESUMEN

In electronic and optoelectronic devices made from van der Waals heterostructures, electric fields can induce substantial band structure changes which are crucial to device operation but cannot usually be directly measured. Here, we use spatially resolved angle-resolved photoemission spectroscopy to monitor changes in band alignment of the component layers, corresponding to band structure changes of the composite heterostructure system, that are produced by electrostatic gating. Our devices comprise graphene on a monolayer semiconductor, WSe2 or MoSe2, atop a boron nitride dielectric and a graphite gate. Applying a gate voltage creates an electric field that shifts the semiconductor bands relative to those in the graphene by up to 0.2 eV. The results can be understood in simple terms by assuming that the materials do not hybridize.

3.
PLoS Pathog ; 7(4): e1002020, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533216

RESUMEN

HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Desoxirribonucleasas/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Receptores CXCR4/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Proliferación Celular , Desoxirribonucleasas/biosíntesis , Desoxirribonucleasas/genética , Modelos Animales de Enfermedad , Ingeniería Genética , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/terapia , VIH-1/genética , VIH-1/metabolismo , Humanos , Macaca mulatta , Ratones , Receptores CCR5/genética , Receptores CCR5/inmunología , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Trasplante Autólogo , Trasplante Heterólogo , Internalización del Virus
4.
Sci Adv ; 5(2): eaat8799, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30783621

RESUMEN

A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe2. Here, we directly image the local conductivity of monolayer WTe2 using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2. Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.

5.
IEEE Trans Biomed Eng ; 52(1): 136-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15651575

RESUMEN

We degraded electrocardiographic electrodes by exposing them to air for four days and evaluated them on 12 subjects. After application, we recorded the electrocardiogram (including motion artifact), missed QRS detections and electrode impedance during 5 min of arm and body movements. Missed QRS detections increased with electrode impedance but correlation was poor. Increased electrode impedance was not a reliable predictor of a poor electrode and the need to replace it.


Asunto(s)
Artefactos , Impedancia Eléctrica , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Electrodos , Análisis de Falla de Equipo , Movimiento , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA