Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 54(10): 1976-87, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25710192

RESUMEN

The carbapenem-hydrolyzing class D ß-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for ß-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the ß5-ß6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the ß5-ß6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D ß-lactamases but may also provide a map for ß-lactam improvement.


Asunto(s)
Acinetobacter baumannii/enzimología , Aztreonam/química , Proteínas Bacterianas/química , Cefalosporinas/química , beta-Lactamasas/química , Hidrólisis , Cinética , Estructura Secundaria de Proteína
2.
Antimicrob Agents Chemother ; 57(10): 4848-55, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23877677

RESUMEN

Class D ß-lactamases that hydrolyze carbapenems such as imipenem and doripenem are a recognized danger to the efficacy of these "last-resort" ß-lactam antibiotics. Like all known class D carbapenemases, OXA-23 cannot hydrolyze the expanded-spectrum cephalosporin ceftazidime. OXA-146 is an OXA-23 subfamily clinical variant that differs from the parent enzyme by a single alanine (A220) inserted in the loop connecting ß-strands ß5 and ß6. We discovered that this insertion enables OXA-146 to bind and hydrolyze ceftazidime with an efficiency comparable to those of other extended-spectrum class D ß-lactamases. OXA-146 also binds and hydrolyzes aztreonam, cefotaxime, ceftriaxone, and ampicillin with higher efficiency than OXA-23 and preserves activity against doripenem. In this study, we report the X-ray crystal structures of both the OXA-23 and OXA-146 enzymes at 1.6-Å and 1.2-Å resolution. A comparison of the two structures shows that the extra alanine moves a methionine (M221) out of its normal position, where it forms a bridge over the top of the active site. This single amino acid insertion also lengthens the ß5-ß6 loop, moving the entire backbone of this region further away from the active site. A model of ceftazidime bound in the active site reveals that these two structural alterations are both likely to relieve steric clashes between the bulky R1 side chain of ceftazidime and OXA-23. With activity against all four classes of ß-lactam antibiotics, OXA-146 represents an alarming new threat to the treatment of infections caused by Acinetobacter spp.


Asunto(s)
Antibacterianos/farmacología , Aztreonam/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Cefalosporinas/farmacología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Acinetobacter/efectos de los fármacos , Acinetobacter/enzimología , Secuencia de Aminoácidos , Ampicilina/farmacología , Cristalografía por Rayos X , Doripenem , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA