Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 118(7): 1339-1347, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29679248

RESUMEN

PURPOSE: High-intensity neuromuscular electrical stimulation (NMES) training can induce muscle hypertrophy at the whole muscle and muscle fiber levels. However, whether low-intensity NMES training has a similar result is unknown. This study aimed to investigate whether low-intensity NMES training could elicit muscle hypertrophy at the whole muscle and muscle fiber levels in the human skeletal muscle. METHODS: Eight untrained young males were subjected to 18 min of unilateral NMES training for 8 weeks. One leg received NMES at maximal tolerable intensity (HIGH); the other leg received NMES at an intensity half of that in the HIGH condition (LOW). Quadriceps muscle thickness (MT), muscle fiber cross-sectional area (CSA), and knee extension strength were measured before and after the training period. RESULTS: The average training intensity throughout the intervention period in the HIGH and LOW conditions were 62.5 ± 4.6% maximal voluntary contraction (MVC) and 32.6 ± 2.6% MVC, respectively. MT, CSA, and muscle strength increased in both exercise conditions (p < 0.05); however, training effects in the LOW condition were lower than those in the HIGH condition (p < 0.05). The average training intensity showed a positive correlation with percent changes in muscle strength (r = 0.797, p = 0.001), MT (r = 0.876, p = 0.001), type I fiber CSA (r = 0.730, p = 0.01), and type II fiber CSA (r = 0.899, p = 0.001). CONCLUSIONS: Low-intensity NMES could increase MT, muscle fiber CSA, and muscle strength in healthy human skeletal muscles. However, the magnitude of increase is lower in low-intensity than in high-intensity NMES training.


Asunto(s)
Contracción Isométrica , Fibras Musculares Esqueléticas/fisiología , Acondicionamiento Físico Humano/métodos , Adulto , Estimulación Eléctrica , Humanos , Pierna/fisiología , Masculino
2.
Eur J Nutr ; 54(4): 551-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25018031

RESUMEN

PURPOSE: Body weight in young growing and young adult animals was reduced by a high dietary density of whey protein concentrate; however, it is unclear whether dietary proteins similarly affect body weight in aging animals. Here, we examined whether whey protein or whey peptide ingestion suppressed body fat accumulation and affected protein expression and phosphorylation in skeletal muscle in aging mice. METHODS: Twenty-six male senescence-accelerated mouse prone 6 (SAMP6) mice were assigned randomly to three dietary treatment groups: 18.7% casein control (CON), 18.7% whey protein (WPR), and 18.7% whey peptide (WPE). After 28 weeks of treatment, skeletal tissues were dissected and weighed for analysis. Western blotting was performed to examine the expression of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and adipose triglyceride lipase (ATGL) in quadriceps muscles. RESULTS: Body (CON: 47.6 ± 2.2 g, WPR: 48.2 ± 2.7 g, WPE: 38.3 ± 2.0 g) and relative white adipose tissue (CON: 38.5 ± 3.5 mg/g, WPR: 43.8 ± 4.0 mg/g, WPE: 21.1 ± 4.4 mg/g) weights were lower in the WPE group compared with the other two groups (p < 0.05), and no significant differences were observed between the CON and WPR groups. The relative weights of tibialis anterior muscle (CON: 1.04 ± 0.04 mg/g, WPR: 0.97 ± 0.03 mg/g, 1.23 ± 0.05 mg/g) and gastrocnemius muscle (CON: 3.02 ± 0.12 mg/g, WPR: 2.92 ± 0.15 mg/g, WPE: 3.65 ± 0.18 mg/g) were higher in the WPE group compared with the other groups (p < 0.05). The phosphorylation of AMPK (WPR: 1.03 ± 0.11, WPE: 1.36 ± 0.12; fold change from control) and ACC (WPR: 1.08 ± 0.07, WPE: 1.18 ± 0.05; fold change from control) in WPE was higher than in CON (p < 0.05). There were no significant differences in the expression levels of ATGL among the three groups. CONCLUSIONS: These data suggest that a normal (or moderate excess) dietary density of whey peptide attenuates body fat accumulation via upregulation of fatty acid oxidation in skeletal muscle in aging mice.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Envejecimiento , Ingestión de Alimentos , Péptidos/administración & dosificación , Proteína de Suero de Leche/administración & dosificación , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta , Lipasa/genética , Lipasa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación
3.
BMC Public Health ; 14: 1012, 2014 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-25261876

RESUMEN

BACKGROUND: The aim of this study is to investigate the independent and joint effects of cardiorespiratory fitness (CRF) and body mass index (BMI) on cancer mortality in a low body mass index population. METHODS: We evaluated CRF and BMI in relation to cancer mortality in 8760 Japanese men. The median BMI was 22.6 kg/m2 (IQR: 21.0-24.3). The mean follow-up period was more than 20 years. Hazard ratios and 95% CI were obtained using a Cox proportional hazards model while adjusting for several confounding factors. RESULTS: Using the 2nd tertile of BMI (21.6-23.6 kg/m2) as reference, hazard ratios and 95% CI for the lowest tertile of BMI (18.5-21.5) were 1.26 (0.87-1.81), and 0.92 (0.64-1.34) for the highest tertile (23.7-37.4). Using the lowest tertile of CRF as reference, hazard ratios and 95% CIs for 2nd and highest tertiles of CRF were 0.78 (0.55-1.10) and 0.59 (0.40-0.88). We further calculated hazard ratios according to groups of men cross-tabulated by tertiles of CRF and BMI. Among men in the second tertile of BMI, those belonging to the lowest CRF tertile had a 53% lower risk of cancer mortality compared to those in the lowest CRF tertile (hazard ratio: 0.47, 95% CI: 0.23-0.97). Among those in the highest BMI tertile, the corresponding hazard ratio was 0.54 (0.25-1.17). CONCLUSION: These results suggest that high CRF is associated with lower cancer mortality in a Japanese population of men with low average BMI.


Asunto(s)
Pueblo Asiatico , Índice de Masa Corporal , Neoplasias/etnología , Neoplasias/mortalidad , Aptitud Física , Adulto , Anciano , Estudios de Cohortes , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Fumar/etnología , Adulto Joven
4.
Eur J Appl Physiol ; 114(4): 735-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24384983

RESUMEN

PURPOSE: Protein ingestion after resistance exercise increases muscle protein synthesis (MPS) in a dose-dependent manner. However, the molecular mechanism(s) for the dose-dependency of MPS remains unclear. This study aimed to determine the dose response of mammalian target of rapamycin (mTOR) signaling in muscle with ingestion of protein after resistance exercise. METHODS: Fifteen male subjects performed four sets of six unilateral isokinetic concentric knee extensions. Immediately after exercise, eight subjects consumed water only. The other seven subjects, in a randomized-order crossover design, took either a 10 [3.6 g essential amino acids (EAA)] or 20 g (7.1 g EAA) solution of whey protein. Muscle biopsies from the vastus lateralis muscle were taken 30 min before and 1 h after resistance exercise. Phosphorylation of Akt (Ser473), mTOR (Ser2448), 4E-BP1 (Thr37/46), and S6K1 (Thr389) was measured by western blotting. RESULTS: Concentric knee extension exercise alone did not increase phosphorylation of Akt and mTOR 1 h after exercise, but ingesting protein after exercise significantly increased the phosphorylation of Akt and mTOR in a dose-dependent manner (P < 0.05). 4E-BP1 phosphorylation significantly decreased after resistance exercise (P < 0.05), but subjects who took 10 or 20 g of protein after exercise showed increased 4E-BP1 from post-exercise dephosphorylation (P < 0.05). S6K1 phosphorylation significantly increased after resistance exercise (P < 0.05), and 20 g of protein further increased S6K1 phosphorylation compared with ingestion of 10 g (P < 0.05). CONCLUSIONS: These findings suggest that whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in untrained men.


Asunto(s)
Proteínas de la Leche/farmacología , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Administración Oral , Aminoácidos Esenciales/metabolismo , Proteínas de Ciclo Celular , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Humanos , Rodilla/fisiología , Masculino , Proteínas de la Leche/administración & dosificación , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Suero de Leche , Adulto Joven
5.
J Strength Cond Res ; 27(1): 8-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23249767

RESUMEN

Knowledge of the effects of training volume on upper limb muscular strength and hypertrophy is rather limited. In this study, both arms of the same subject were trained in a crossover-like design with different training volumes (1 or 3 sets) to eliminate the effects of genetic variation and other individual differences. The purpose of this study was to investigate the effects of training volume on muscular strength and hypertrophy in sedentary, untrained young Japanese men. Eight subjects (age, 25.0 ± 2.1 years; body mass, 64.2 ± 7.9 kg; height, 171.7 ± 5.1 cm) were recruited. The subjects trained their elbow flexor muscles twice per week for 12 consecutive weeks using a seated dumbbell preacher curl. The arms were randomly assigned to training with 1 or 3 sets. The training weight was set at 80% of 1 repetition maximum for all sets. The 3-set protocol increased cross-sectional area significantly more than did 1 set (1 set, 8.0 ± 3.7%; 3 sets, 13.3 ± 3.6%, p < 0.05). Furthermore, gains in strength with the 3-set protocol tended to be greater than those with 1 set (1 set, 20.4 ± 21.6%; 3 sets, 31.7 ± 22.0%, p = 0.076). Based on the results, the authors recommend 3 sets for sedentary untrained individuals. However, this population should incorporate light training days of 1 set into their training program to prevent overtraining and ensure adherence. The findings are relevant for the sedentary, untrained young male population and must be interpreted within the context of this study.


Asunto(s)
Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Extremidad Superior/fisiología , Adulto , Análisis de Varianza , Índice de Masa Corporal , Estudios Cruzados , Humanos , Hipertrofia , Japón , Imagen por Resonancia Magnética , Masculino , Distribución Aleatoria , Conducta Sedentaria
6.
Biochem Biophys Res Commun ; 419(2): 401-4, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22349507

RESUMEN

α-Actinins are actin-binding proteins, and two isoforms (α-actinin-2 and -3) are major structural components of the sarcomeric Z line in mammalian skeletal muscle. Based on human and knockout mice studies, α-actinin-3 is thought to be associated with muscle force output and high contraction velocities. However, fiber-type specific expression of α-actinin isoforms is not well understood and may vary among species. In this study, we investigated the expression of α-actinin isoforms and the difference between fiber types in rat skeletal muscle and compared it with those of humans and mice from previous reports. Soleus and plantaris muscles were analyzed immunohistochemically to identify muscle fiber types and α-actinin protein expression. α-Actinin-2 was stained in all muscle fibers in both the soleus and plantaris muscles; i.e., all α-actinin-3 co-expressed with α-actinin-2 in rat skeletal muscles. The proportions of α-actinin-3 expression, regardless of fiber type, were significantly higher in the plantaris (75.8 ± 0.6%) than the soleus (8.0 ± 1.7%). No α-actinin-3 expression was observed in type I fibers, whereas all type IIx+b fibers expressed α-actinin-3. α-Actinin-3 was also expressed in type IIa fibers; however, approximately 75% of type IIa fibers were not stained by α-actinin-3, and the proportion varied between muscles. The proportion of α-actinin-3 expression in type IIa fibers was significantly higher in the soleus muscle than the plantaris muscle. Our results showed that fiber-type specific expression of α-actinin isoforms in rats is more similar to that in humans compared to that of the mouse, whereas the proportion of α-actinin-3 protein varied between muscles.


Asunto(s)
Actinina/biosíntesis , Fibras Musculares Esqueléticas/metabolismo , Animales , Humanos , Masculino , Ratones , Isoformas de Proteínas/biosíntesis , Ratas , Ratas Wistar
7.
PLoS One ; 17(2): e0264171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213577

RESUMEN

We investigated whether time-of-day dependent changes in the rat soleus (SOL) muscle size, after eccentric exercises, operate via the mechanistic target of rapamycin (mTOR) signaling pathway. For our first experiment, we assigned 9-week-old male Wistar rats randomly into four groups: light phase (zeitgeber time; ZT6) non-trained control, dark phase (ZT18) non-trained control, light phase-trained, and dark phase-trained. Trained animals performed 90 min of downhill running once every 3 d for 8 weeks. The second experiment involved dividing 9-week-old male Wistar rats to control and exercise groups. The latter were subjected to 15 min of downhill running at ZT6 and ZT18. The absolute (+12.8%) and relative (+9.4%) SOL muscle weights were higher in the light phase-trained group. p70S6K phosphorylation ratio was 42.6% higher in the SOL muscle of rats that had exercised only in light (non-trained ZT6). Collectively, the degree of muscle hypertrophy in SOL is time-of-day dependent, perhaps via the mTOR/p70S6K signaling.


Asunto(s)
Ritmo Circadiano , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Carrera , Transducción de Señal , Animales , Masculino , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
Skelet Muscle ; 12(1): 16, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780170

RESUMEN

BACKGROUND: Skeletal muscle fiber type distribution has implications for human health, muscle function, and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested. METHODS: By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22). RESULTS: The correlation between the sequencing-based method and the other two were rATPas = 0.44 [0.13-0.67], [95% CI], and rmyosin = 0.83 [0.61-0.93], with p = 5.70 × 10-3 and 2.00 × 10-6, respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~ 10,000 paired-end reads. CONCLUSIONS: This new method ( https://github.com/OlaHanssonLab/PredictFiberType ) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies.


Asunto(s)
Fibras Musculares Esqueléticas , ARN , Secuencia de Bases , Humanos , Análisis de Secuencia de ARN , Secuenciación del Exoma
9.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497168

RESUMEN

Muscle fiber composition is associated with physical performance, with endurance athletes having a high proportion of slow-twitch muscle fibers compared to power athletes. Approximately 45% of muscle fiber composition is heritable, however, single nucleotide polymorphisms (SNP) underlying inter-individual differences in muscle fiber types remain largely unknown. Based on three whole genome SNP datasets, we have shown that the rs236448 A allele located near the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene was associated with an increased proportion of slow-twitch muscle fibers in Russian (n = 151; p = 0.039), Finnish (n = 287; p = 0.03), and Japanese (n = 207; p = 0.008) cohorts (meta-analysis: p = 7.9 × 10−5. Furthermore, the frequency of the rs236448 A allele was significantly higher in Russian (p = 0.045) and Japanese (p = 0.038) elite endurance athletes compared to ethnically matched power athletes. On the contrary, the C allele was associated with a greater proportion of fast-twitch muscle fibers and a predisposition to power sports. CDKN1A participates in cell cycle regulation and is suppressed by the miR-208b, which has a prominent role in the activation of the slow myofiber gene program. Bioinformatic analysis revealed that the rs236448 C allele was associated with increased CDKN1A expression in whole blood (p = 8.5 × 10−15) and with greater appendicular lean mass (p = 1.2 × 10−5), whereas the A allele was associated with longer durations of exercise (p = 0.044) reported amongst the UK Biobank cohort. Furthermore, the expression of CDKN1A increased in response to strength (p < 0.0001) or sprint (p = 0.00035) training. Accordingly, we found that CDKN1A expression is significantly (p = 0.002) higher in the m. vastus lateralis of strength athletes compared to endurance athletes and is positively correlated with the percentage of fast-twitch muscle fibers (p = 0.018). In conclusion, our data suggest that the CDKN1A rs236448 SNP may be implicated in the determination of muscle fiber composition and may affect athletic performance.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Estudio de Asociación del Genoma Completo , Fibras Musculares Esqueléticas , Fibras Musculares de Contracción Lenta , Humanos , Atletas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares de Contracción Lenta/fisiología
10.
Biochim Biophys Acta Gen Subj ; 1866(2): 130048, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728329

RESUMEN

Human skeletal muscle fiber is heterogenous due to its diversity of slow- and fast-twitch fibers. In human, slow-twitched fiber gene expression is correlated to MOTS-c, a mitochondria-derived peptide that has been characterized as an exercise mimetic. Within the MOTS-c open reading frame, there is an East Asian-specific m.1382A>C polymorphism (rs111033358) that changes the 14th amino acid of MOTS-c (i.e., K14Q), a variant of MOTS-c that has less biological activity. Here, we examined the influence of the m.1382A>C polymorphism causing MOTS-c K14Q on skeletal muscle fiber composition and physical performance. The myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx) as an indicator of muscle fiber composition were assessed in 211 Japanese healthy individuals (102 men and 109 women). Muscular strength was measured in 86 physically active young Japanese men by using an isokinetic dynamometer. The allele frequency of the m.1382A>C polymorphism was assessed in 721 Japanese athletes and 873 ethnicity-matched controls. The m.1382A>C polymorphism genotype was analyzed by TaqMan SNP Genotyping Assay. Individuals with the C allele of the m.1382A>C exhibited a higher proportion of MHC-IIx, an index of fast-twitched fiber, than the A allele carriers. Men with the C allele of m.1382A>C exhibited significantly higher peak torques of leg flexion and extension. Furthermore, the C allele frequency was higher in the order of sprint/power athletes (6.5%), controls (5.1%), and endurance athletes (2.9%). Additionally, young male mice were injected with the MOTS-c neutralizing antibody once a week for four weeks to mimic the C allele of the m.1382A>C and assessed for protein expression levels of MHC-fast and MHC-slow. Mice injected with MOTS-c neutralizing antibody showed a higher expression of MHC-fast than the control mice. These results suggest that the C allele of the East Asian-specific m.1382A>C polymorphism leads to the MOTS-c K14Q contributes to the sprint/power performance through regulating skeletal muscle fiber composition.


Asunto(s)
ADN Mitocondrial
11.
Biochem Biophys Res Commun ; 414(4): 756-60, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22005460

RESUMEN

Macroautophagy (autophagy) is an intracellular catalytic process. We examined the effect of running exercise, which stimulates cardiac work physiologically, on the expression of microtubule-associated protein 1 light chain 3 (LC3)-II, an indicator of autophagy, as well as some autophagy-related proteins in rat cardiac muscle. The left ventricles were taken from rats immediately (0 h), and at 0.5h, 1h or 3h after a single bout of running exercise on a treadmill for 30 min and also from rats in a rest condition. In these samples, we evaluated the level of LC3-II and p62, and the phosphorylation level of mammalian target of rapamycin (mTOR), Akt and AMP-activated protein kinase alpha (AMPKα) by Western blotting. The exercise produced a biphasic change in LC3-II, with an initial decrease observed immediately after the exercise and a subsequent increase 1h thereafter. LC3-II then returned to the rest level at 3h after the exercise. A negative correlation was found between the LC3-II expression and mTOR phosphorylation, which plays a role in inhibiting autophagy. The exercise increased phosphorylation of AMPKα, which stimulates autophagy via suppression of mTOR phosphorylation, immediately after exercise. The level of p62 and phosphorylated Akt was not altered significantly by the exercise. These results suggest for the first time that a single bout of running exercise induces a biphasic change in autophagy in the cardiac muscle. The exercise-induced change in autophagy might be partially mediated by mTOR in the cardiac muscle.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/biosíntesis , Miocardio/metabolismo , Condicionamiento Físico Animal , Carrera , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas de Choque Térmico/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Proteína Sequestosoma-1 , Serina-Treonina Quinasas TOR/metabolismo
12.
J Appl Physiol (1985) ; 130(3): 528-536, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33270511

RESUMEN

Consumption of a high-fat diet (HFD) significantly increases exercise endurance performance during treadmill running. However, whether HFD consumption increases endurance capacity via enhanced muscle fatigue resistance has not been clarified. In this study, we investigated the effects of HFDs on contractile force and fatigue resistance of slow-twitch dominant muscles. The soleus (SOL) muscle of male C57BL/6J mice fed an HFD (60% kcal from fat) or a low-fat diet (LFD) for 12 wk was analyzed. Muscle contractile force was measured under resting conditions and during fatigue induced by repeated tetanic contractions (100 Hz, 50 contractions, and 2-s intervals). Differences in muscle twitch or tetanic force were not evident between HFD and LFD groups, whereas fatigue resistance was higher in the HFD groups. The SOL muscle of HFD-fed mice showed increased levels of markers related to oxidative capacity such as succinate dehydrogenase (SDH) and citrate synthase (CS) activity. In addition, electron microscopy analyses indicated that the total number of mitochondria and mitochondrial volume density increased in the SOL muscle of the HFD groups. These findings suggest that HFD consumption induces increased muscle fatigue resistance in slow-twitch dominant muscle fibers. This effect of HFD may be related to elevated oxidative enzyme activity, high mitochondrial content, or both.NEW & NOTEWORTHY In this study, we examined the effects of HFDs on muscle contractile force and fatigue resistance of slow-twitch dominant muscles ex vivo. We found that contractile function was comparable between the HFD groups and the LFD group, whereas fatigue resistance was higher in the HFD groups. This effect of HFD may be related to elevated oxidative enzyme activity, high mitochondrial content, or both.


Asunto(s)
Dieta Alta en Grasa , Contracción Muscular , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fatiga Muscular , Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Músculo Esquelético
13.
J Appl Physiol (1985) ; 130(4): 1214-1225, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33600278

RESUMEN

This study investigated the effects of long-term physical inactivity in adolescent on subsequent hindlimb unloading-induced muscle atrophy in rat soleus muscle. First, 3-wk-old male Wistar rats were assigned to an age-matched control (n = 6) or a physical inactivity (n = 8) group. Rats in the physical inactivity group were housed in narrow cages with approximately half the usual floor space for 8 wk to limit range of movement. Whole body energy consumption was measured, and the blood, organs, femoral bone, and hindlimb muscles were removed. We found that long-term physical inactivity did not affect the metabolic and physiological characteristics of growing rats. Then, fifty-six 3-wk-old male Wistar rats were assigned randomly into control (n = 28) and physical inactivity (n = 28) groups. After 8 wk, the rats in both groups underwent hindlimb unloading. The soleus muscles were removed before unloading (0 day), and 1, 3, and 7 days after unloading (n = 7 for each). Although the soleus muscle weight was significantly decreased after 7 days of hindlimb unloading in both groups, the decrease was drastic in the inactive group. A significant interaction between inactivity and unloading (P < 0.01) was observed according to the 4-hydroxynonenal-conjugated protein levels and the histone deacetylase 4 (HDAC4) and NF-κB protein levels. HDAC4 and NF-κB p65 protein levels in the physical inactivity group increased significantly 1 day after hindlimb unloading, along with the mRNA levels of their downstream targets myogenin and muscle RING finger protein 1 (MuRF1). Subsequent protein ubiquitination was upregulated by long-term physical inactivity (P < 0.05).NEW & NOTEWORTHY Long-term physical inactivity exacerbates hindlimb unloading-induced disuse muscle atrophy in young rat soleus muscles, possibly mediated by oxidative stress-induced protein ubiquitination via HDAC4- and NF-κB p65-induced MuRF1 mRNA upregulation.


Asunto(s)
Suspensión Trasera , Conducta Sedentaria , Animales , Miembro Posterior , Masculino , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Ratas , Ratas Wistar
14.
Genes (Basel) ; 13(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052344

RESUMEN

Human muscle fiber composition is heterogeneous and mainly determined by genetic factors. A previous study reported that experimentally induced iron deficiency in rats increases the proportion of fast-twitch muscle fibers. Iron status has been reported to be affected by genetic factors. As the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms are strongly associated with iron status in humans, we hypothesized that the genotype score (GS) based on these polymorphisms could be associated with the muscle fiber composition in humans. Herein, we examined 214 Japanese individuals, comprising of 107 men and 107 women, for possible associations of the GS for iron status with the proportion of myosin heavy chain (MHC) isoforms (I, IIa, and IIx) as markers of muscle fiber composition. No statistically significant correlations were found between the GS for iron status and the proportion of MHC isoforms in all participants. When the participants were stratified based on sex, women showed positive and negative correlations of the GS with MHC-IIa (age-adjusted p = 0.020) and MHC-IIx (age-adjusted p = 0.011), respectively. In contrast, no correlation was found in men. In women, a 1-point increase in the GS was associated with 2.42% higher MHC-IIa level and 2.72% lower MHC-IIx level. Our results suggest that the GS based on the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms for iron status is associated with muscle fiber composition in women.


Asunto(s)
Genotipo , Hierro/metabolismo , Fibras Musculares Esqueléticas/fisiología , Adolescente , Adulto , Femenino , Humanos , Japón , Complejo Mayor de Histocompatibilidad/genética , Masculino , Proteínas de la Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/genética , Polimorfismo Genético , Serina Endopeptidasas/genética , Adulto Joven
15.
Med Sci Sports Exerc ; 53(9): 1855-1864, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33731655

RESUMEN

PURPOSE: We aimed to investigate the hypothesis that type I collagen plays a role in increasing bone mineral density (BMD) and muscle stiffness, leading to low and high risks of fatigue fracture and muscle injury, respectively, in athletes. As a potential mechanism, we focused on the effect of the type I collagen alpha 1 chain gene (COL1A1) variant associated with transcriptional activity on bone and skeletal muscle properties. METHODS: The association between COL1A1 rs1107946 and fatigue fracture/muscle injury was evaluated in Japanese athletes. Effects of the polymorphism on tissue properties (BMD and muscle stiffness) and type I collagen α1/α2 chain ratios in muscles were examined in Japanese nonathletes. RESULTS: The C-allele carrier frequency was greater in female athletes with fatigue fracture than in those without (odds ratio = 2.44, 95% confidence interval [CI] = 1.17-5.77) and lower in female athletes with muscle injury than in those without (odds ratio = 0.46, 95% CI = 0.24-0.91). Prospective validation analysis confirmed that in female athletes, muscle injury was less frequent in C-allele carriers than in AA genotype carriers (multivariable-adjusted hazard ratio = 0.27, 95% CI = 0.08-0.96). Among female nonathletes, the C-allele of rs1107946 was associated with lower BMD and lower muscle stiffness. Muscle biopsy revealed that C-allele carriers tended to have a larger type I collagen α1/α2 chain ratio than AA genotype carriers (2.24 vs 2.05, P = 0.056), suggesting a higher proportion of type I collagen α1 homotrimers. CONCLUSION: The COL1A1 rs1107946 polymorphism exerts antagonistic effects on fatigue fracture and muscle injury among female athletes by altering the properties of these tissues, potentially owing to increased levels of type I collagen α1 chain homotrimers.


Asunto(s)
Colágeno Tipo I/genética , Fracturas por Estrés/genética , Predisposición Genética a la Enfermedad , Músculo Esquelético/lesiones , Adulto , Femenino , Humanos , Japón , Masculino , Polimorfismo Genético , Adulto Joven
16.
Int J Sports Physiol Perform ; 16(4): 489-495, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33059329

RESUMEN

PURPOSE: To replicate previous genome-wide association study identified sprint-related polymorphisms in 3 different cohorts of top-level sprinters and to further validate the obtained results in functional studies. METHODS: A total of 240 Japanese, 290 Russians, and 593 Brazilians were evaluated in a case-control approach. Of these, 267 were top-level sprint/power athletes. In addition, the relationship between selected polymorphisms and muscle fiber composition was evaluated in 203 Japanese and 287 Finnish individuals. RESULTS: The G allele of the rs3213537 polymorphism was overrepresented in Japanese (odds ratio [OR]: 2.07, P = .024) and Russian (OR: 1.93, P = .027) sprinters compared with endurance athletes and was associated with an increased proportion of fast-twitch muscle fibers in Japanese (P = .02) and Finnish (P = .041) individuals. A meta-analysis of the data from 4 athlete cohorts confirmed that the presence of the G/G genotype rather than the G/A+A/A genotypes increased the OR of being a sprinter compared with controls (OR: 1.49, P = .01), endurance athletes (OR: 1.79, P = .001), or controls + endurance athletes (OR: 1.58, P = .002). Furthermore, male sprinters with the G/G genotype were found to have significantly faster personal times in the 100-m dash than those with G/A+A/A genotypes (10.50 [0.26] vs 10.76 [0.31], P = .014). CONCLUSION: The rs3213537 polymorphism found in the CPNE5 gene was identified as a highly replicable variant associated with sprinting ability and the increased proportion of fast-twitch muscle fibers, in which the homozygous genotype for the major allele (ie, the G/G genotype) is preferable for performance.


Asunto(s)
Rendimiento Atlético , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Carrera/fisiología , Atletas , Brasil , Frecuencia de los Genes , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Japón , Masculino , Resistencia Física , Federación de Rusia
17.
PLoS One ; 15(10): e0241382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33125406

RESUMEN

Recent studies of the ketogenic diet, an extremely high-fat diet with extremely low carbohydrates, suggest that it changes the energy metabolism properties of skeletal muscle. However, ketogenic diet effects on muscle metabolic characteristics are diverse and sometimes countervailing. Furthermore, ketogenic diet effects on skeletal muscle performance are unknown. After male Wistar rats (8 weeks of age) were assigned randomly to a control group (CON) and a ketogenic diet group (KD), they were fed for 4 weeks respectively with a control diet (10% fat, 10% protein, 80% carbohydrate) and a ketogenic diet (90% fat, 10% protein, 0% carbohydrate). After the 4-week feeding period, the extensor digitorum longus (EDL) muscle was evaluated ex vivo for twitch force, tetanic force, and fatigue. We also analyzed the myosin heavy chain composition, protein expression of metabolic enzymes and regulatory factors, and citrate synthase activity. No significant difference was found between CON and KD in twitch or tetanic forces or muscle fatigue. However, the KD citrate synthase activity and the protein expression of Sema3A, citrate synthase, succinate dehydrogenase, cytochrome c oxidase subunit 4, and 3-hydroxyacyl-CoA dehydrogenase were significantly higher than those of CON. Moreover, a myosin heavy chain shift occurred from type IIb to IIx in KD. These results demonstrated that the 4-week ketogenic diet improves skeletal muscle aerobic capacity without obstructing muscle contractile function in sedentary male rats and suggest involvement of Sema3A in the myosin heavy chain shift of EDL muscle.


Asunto(s)
Dieta Cetogénica , Metabolismo Energético , Músculo Esquelético/fisiología , Animales , Glucógeno/metabolismo , Masculino , Contracción Muscular , Fatiga Muscular , Ratas Wistar , Conducta Sedentaria
18.
J Appl Physiol (1985) ; 128(5): 1153-1162, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213111

RESUMEN

Obesity and aging reduce skeletal muscle contractile function. However, it remains unclear whether obesity additively promotes muscle contractile dysfunction in the setting of aging. In this study, we investigated skeletal muscle contractile function ex vivo and intracellular Ca2+ release in male C57BL/6J mice fed a low-fat diet (LFD) or a high-fat diet (HFD) for 4 or 20 mo. Tetanic force production in the extensor digitorum longus muscle was decreased by aging or HFD feeding, and the further reduction was observed in aged HFD mice. The 20-mo HFD-fed mice, not the 20-mo LFD-fed mice or 4-mo HFD-fed mice, showed reduced intracellular Ca2+ peak levels by high concentration of caffeine (25 mM) compared with 4-mo LFD mice. Aging and HFD feeding additively increased intramyocellular lipid (IMCL) levels and were associated with the degree of impaired muscle contractile force and peak Ca2+ level. These data suggest that impairment in the contractile force in aged muscle is aggravated by HFD, which may be due, at least in part, to dysfunction in intracellular Ca2+ release. The IMCL level may be a marker for impaired muscle contractile force caused by aging and HFD.NEW & NOTEWORTHY The aim of this study was to examine the effect of high-fat diet (HFD)-induced obesity on contractile function and Ca2+ release capacity in aged skeletal muscle. Not only were the force production and peak Ca2+ levels decreased by aging and HFD feeding, respectively, but also, these interventions had an additive effect in aged HFD-fed mice. These data suggest that the impairment in the contractile force in aged muscle is aggravated by a HFD, which may be due to synergistic dysfunction in intracellular Ca2+ release.


Asunto(s)
Dieta Alta en Grasa , Contracción Muscular , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético , Obesidad
19.
Eur J Pharmacol ; 871: 172940, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31968212

RESUMEN

In atherosclerosis progression, atherosclerotic plaques develop upon accumulated foam cells derived from macrophages that take up modified low-density lipoprotein (LDL). CD36 and CD204 are the principal scavenger receptors responsible for the uptake of modified LDL. Lipopolysaccharide (LPS) exacerbates atherosclerosis by enhancing the expression of scavenger receptors and thus increasing the uptake of modified LDL into macrophages. However, the signaling pathways that mediate LPS and scavenger receptor expression have not been fully elucidated. We used mouse bone marrow-derived macrophages and investigated the effects of LPS in vitro. LPS enhanced the phosphorylation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-1 (STAT-1). Inhibitors of the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) pathway (U0126 and PD0325901) suppressed the uptake of acetylated-LDL (Ac-LDL) and the expression of CD204 but not CD36 in LPS-activated macrophages. Inhibitors of the Janus tyrosine kinase (JAK)-STAT pathway (ruxolitinib and tofacitinib) suppressed the uptake of Ac-LDL and the expression of both CD36 and CD204 in LPS-activated macrophages. We next injected LPS into the peritoneal cavity of mice and analyzed the effects of LPS. MEK inhibitor U0126 suppressed the uptake of Ac-LDL and the expression of CD204 but not CD36 in LPS-activated macrophages. JAK inhibitor ruxolitinib suppressed the uptake of Ac-LDL and the expression of both CD36 and CD204 in LPS-activated macrophages. These results suggest that scavenger receptors in LPS-activated mouse macrophages are regulated through a JAK-STAT-dependent pathway. Although further evaluation is necessary, JAK-STAT inhibition could be useful in atherosclerosis therapy, at least for atherosclerosis exacerbated by LPS.


Asunto(s)
Quinasas Janus/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Receptores Depuradores/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Antígenos CD36/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Receptores Depuradores de Clase A/metabolismo
20.
Genes (Basel) ; 11(9)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867330

RESUMEN

PPARGC1A rs8192678 G/A (Gly482Ser) and NRF1 rs6949152 A/G polymorphisms have been associated with endurance athlete status, endurance performance phenotypes, and certain health-related markers of different pathologies such as metabolic syndrome, diabetes, and dyslipidemia. We hypothesized that they could be considered interesting candidates for explaining inter-individual variations in muscle fiber composition in humans. We aimed to examine possible associations of these polymorphisms with myosin heavy-chain (MHC) isoforms as markers of muscle fiber compositions in vastus lateralis muscle in a population of 214 healthy Japanese subjects, aged between 19 and 79 years. No significant associations were found in men for any measured variables. In contrast, in women, the PPARGC1A rs8192678 A/A genotype was significantly associated with a higher proportion of MHC-I (p = 0.042) and with a lower proportion of MHC-IIx (p = 0.033), and the NRF1 rs6949152 AA genotype was significantly associated with a higher proportion of MHC-I (p = 0.008) and with a lower proportion of MHC IIx (p = 0.035). In women, the genotype scores of the modes presenting the most significant results for PPARGC1A rs8192678 G/A (Gly482Ser) and NRF1 rs6949152 A/G polymorphisms were significantly associated with MHC-I (p = 0.0007) and MHC IIx (p = 0.0016). That is, women with combined PPARGC1A A/A and NRF1 A/A genotypes presented the highest proportion of MHC-I and the lowest proportion of MHC-IIx, in contrast to women with combined PPARGC1A GG+GA and NRF1 AG+GG genotypes, who presented the lowest proportion of MHC-I and the highest proportion of MHC-IIx. Our results suggest possible associations between these polymorphisms (both individually and in combination) and the inter-individual variability observed in muscle fiber composition in women, but not in men.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Factor Nuclear 1 de Respiración/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Polimorfismo Genético , Adulto , Anciano , Femenino , Genotipo , Humanos , Japón , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA