Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(74): 11061-11064, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37650129

RESUMEN

Reverse water gas shift (RWGS) can convert CO2 into CO by using renewable hydrogen. However, this important reaction is endothermic and equilibrium constrained, and thus traditionally performed at 900 K or higher temperatures using solid catalysts. In this work, we found that RWGS can be carried out at low temperatures without equilibrium constraints using a redox method called chemical looping (CL), which uses the reduction and oxidation of solid oxide surfaces. When using our developed MGa2Ox (M = Ni, Cu, Co) materials, the reaction can proceed with almost 100% CO2 conversion even at temperatures as low as 673 K. This allows RWGS to proceed without equilibrium constraints at low temperatures and greatly decreases the cost for the separation of unreacted CO2 and produced CO. Our novel gallium-based material is the first material that can achieve high conversion rates at low temperatures in reverse water gas shift using chemical looping (RWGS-CL). Ni outperformed Cu and Co as a dopant, and the redox mechanism of NiGa2Ox is a phase change due to the redox of Ga during the RWGS-CL process. This major finding is a big step forward for the effective utilization of CO2 in the future.

2.
Chem Commun (Camb) ; 58(31): 4837-4840, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35297931

RESUMEN

CO2 conversion to CO by reverse water-gas shift using chemical looping (RWGS-CL) can be conducted at lower temperatures (ca. 723-823 K) than the conventional catalytic RWGS (>973 K), and has been attracting attention as an efficient process for CO production from CO2. In this study, Co-In2O3 was developed as an oxygen storage material (OSM) that can realize an efficient RWGS-CL process. Co-In2O3 showed a high CO2 splitting rate in the mid-temperature range (723-823 K) compared with previously reported materials and had high durability through redox cycles. Importantly, the maximum CO2 conversion in the CO2 splitting step (ca. 80%) was much higher than the equilibrium conversion of catalytic RWGS in the mid-temperature range, indicating that Co-In2O3 is a suitable OSM for the RWGS-CL process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA