RESUMEN
Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.
Asunto(s)
Obstrucción Ureteral , Animales , Ratones , Fibrosis , Expresión Génica , Riñón , Ratones NoqueadosRESUMEN
Renal fibrosis is the final manifestation of chronic kidney disease (CKD); its prevention is vital for controlling CKD progression. Indoxyl sulfate (IS), a typical sulfate-conjugated uremic solute, is produced in the liver via the enzyme sulfotransferase (SULT) 1A1 and accumulates significantly during CKD. We investigated the toxicopathological role of IS in renal fibrosis using Sult1a1-KO mice and the underlying mechanisms. The unilateral ureteral obstruction (UUO) model was created; kidney IS concentrations, inflammation, and renal fibrosis were assessed on day 14. After UUO treatment, inflammation and renal fibrosis were exacerbated in WT mice, with an accumulation of IS in the kidney. However, they were significantly suppressed in Sult1a1-KO mice. CD206+ expression was upregulated, and ß-catenin expression was downregulated in Sult1a1-KO mice. To confirm the impact of erythropoietin (EPO) on renal fibrosis, we evaluated the time-dependent expression of EPO. In Sult1a1-KO mice, EPO mRNA expression was improved considerably; UUO-induced renal fibrosis was further attenuated by recombinant human erythropoietin (rhEPO). Thus, UUO-induced renal fibrosis was alleviated in Sult1a1-KO mice with a decreased accumulation of IS. Our findings confirmed the pathological role of IS in renal fibrosis and identified SULT1A1 as a new therapeutic target enzyme for preventing and attenuating renal fibrosis.
Asunto(s)
Indicán , Riñón , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Eritropoyetina/metabolismo , Fibrosis , Indicán/metabolismo , Inflamación/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Obstrucción Ureteral/metabolismoRESUMEN
In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.
Asunto(s)
Hipertensión , Podocitos , Serpinas , Ratas , Animales , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Fibrinolisina , Podocitos/metabolismo , Ratas Endogámicas Dahl , Serpinas/farmacología , Cloruro de Sodio Dietético/farmacología , Proteinuria/patología , Presión Sanguínea , Riñón/metabolismoRESUMEN
Acute kidney injury (AKI) is a life-threatening condition and often progresses to chronic kidney disease or the development of other organ dysfunction even after recovery. Despite the increased recognition and high prevalence of AKI worldwide, there has been no established treatment so far. The aim of this study was to investigate the renoprotective effect of Kyoto University substance 121 (KUS121), a novel valosin-containing protein modulator, on AKI. In in vitro experiments, we evaluated cell viability and ATP levels of proximal tubular cells with or without KUS121 under endoplasmic reticulum (ER) stress conditions. In in vivo experiments, the effects of KUS121 were examined in mice with AKI caused by ischemia-reperfusion injury. ER-associated degradation (ERAD)-processing capacity was evaluated by quantification of the ERAD substrate CD3delta-YFP. KUS121 protected proximal tubular cells from cell death under ER stress. The apoptotic response was mitigated as indicated by the suppression of C/EBP homologous protein expression and caspase-3 cleavage, with maintained intracellular ATP levels by KUS121 administration. KUS121 treatment suppressed the elevation of serum creatinine and neutrophil gelatinase-associated lipocalin levels and attenuated renal tubular damage after ischemia-reperfusion. The expression of inflammatory cytokines in the kidney was also suppressed in the KUS121-treated group. Valosin-containing protein expression levels were not altered by KUS121 both in vitro and in vivo. KUS121 treatment restored ERAD-processing capacity associated with potentiation of its upstream pathway, phosphorylated inositol-requiring enzyme-1α, and spliced X box-binding protein-1. In conclusion, these findings indicate that KUS121 can protect renal tubular cells from ER stress-induced injury, suggesting that KUS121 could be a novel and promising therapeutic compound for ischemia-associated AKI.NEW & NOTEWORTHY Novel findings of this study are as follows: 1) Kyoto University substance 121 (KUS121), a novel valosin-containing protein (VCP) modulator, can reduce ATP consumption of VCP; 2) KUS121 reduced endoplasmic reticulum (ER) stress and improved cell viability in proximal tubular cells; 3) KUS121 exerted renoprotective effects against ischemia-reperfusion injury; and 4) KUS121 may prevent ischemic acute kidney injury with ATP retention and restoring ER-associated degradation capacity.
Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Degradación Asociada con el Retículo Endoplásmico , Humanos , Isquemia/metabolismo , Ratones , Daño por Reperfusión/metabolismo , Proteína que Contiene Valosina/metabolismoRESUMEN
BACKGROUND: Osteocrin (OSTN), a bone-derived humoral factor, was reported to act on heart and bone by potentiating the natriuretic peptide (NP) system. Ostn gene polymorphisms have been associated with renal function decline, but its pathophysiological role in the kidney remains unclear. METHODS: The role of endogenous OSTN was investigated using systemic Ostn-knockout (KO) mice. As a model for OSTN administration, liver-specific Ostn-overexpressing mice crossed with KO (KO-Tg) were generated. These mice were subjected to unilateral ischemia-reperfusion injury (IRI) and renal lesions after 21 days of insult were evaluated. A comprehensive analysis of the Wnt/ß-catenin pathway was performed using a polymerase chain reaction (PCR) array. Reporter plasmid-transfected proximal tubular cells (NRK52E) were used to investigate the mechanism by which OSTN affects the pathway. RESULTS: After injury, KO mice showed marginal worsening of renal fibrosis compared with wild-type mice, with comparable renal atrophy. KO-Tg mice showed significantly ameliorated renal atrophy, fibrosis and tubular injury, together with reduced expressions of fibrosis- and inflammation-related genes. The PCR array showed that the activation of the Wnt/ß-catenin pathway was attenuated in KO-Tg mice. The downstream targets Mmp7, Myc and Axin2 showed similar results. MMP7 and Wnt2 were induced in corticomedullary proximal tubules after injury, but not in KO-Tg. In NRK52E, OSTN significantly potentiated the inhibitory effects of NP on transforming growth factor ß1-induced activation of the Wnt/ß-catenin pathway, which was reproduced by a cyclic guanosine monophosphate analog. CONCLUSIONS: Ectopic Ostn overexpression ameliorated subsequent renal injury following ischemia-reperfusion. OSTN could represent possible renoprotection in acute to chronic kidney disease transition, thus serving as a potential therapeutic strategy.
Asunto(s)
Lesión Renal Aguda , Proteínas Musculares , Insuficiencia Renal Crónica , Daño por Reperfusión , Factores de Transcripción , Lesión Renal Aguda/patología , Animales , Fibrosis , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/metabolismo , Factores de Transcripción/genéticaRESUMEN
Serine proteases (SPs) play physiological roles in the kidney. We previously reported that a synthetic SP inhibitor, camostat mesilate (CM), suppressed sodium reabsorption in the renal tubule and showed natriuretic effects in aldosterone-infused rats. Here, we aimed to explore novel physiological roles of SPs in the renal tubule and understand the mechanism of actions of SP inhibitors, by administering CM to healthy rats. Sprague-Dawley rats were classified into control and CM (subcutaneous sustained-release pellet) groups and sacrificed on day 7. CM significantly increased urine volumes by approximately two-fold in a urinary sodium- and osmolyte excretion-independent manner, indicating the occurrence of free water excretion. Serum vasopressin, potassium, and calcium levels and the osmolality in the renal medulla, which all affect free water reabsorption in the renal tubule, remained unchanged after CM administration. CM decreased urinary exosomal AQP2 excretion, suggesting suppression of AQP2 activity in the collecting duct. These changes were reversed by desmopressin infusion. Water diuresis caused by CM was independent of its action on prostasin or TMPRSS4. Our results revealed the association of SP inhibition with free water handling and demonstrated that CM administration exerted diuretic effects with AQP2 downregulation, suggesting SP inhibitors as a new class of aquaretic drugs.
Asunto(s)
Acuaporina 2 , Inhibidores de Serina Proteinasa , Ratas , Animales , Inhibidores de Serina Proteinasa/farmacología , Ratas Sprague-Dawley , Sodio/metabolismo , Agua/metabolismoRESUMEN
Mesangial lesions and podocyte injury are essential manifestations of the progression of diabetic kidney disease (DKD). Although cross-communication between mesangial cells (MCs) and podocytes has recently been suggested by the results of single-nucleus RNA sequencing analyses, the molecular mechanisms and role in disease progression remain elusive. Our cDNA microarray data of diabetic mouse glomeruli suggested the involvement of endoplasmic reticulum (ER) stress in DKD pathophysiology. In vitro experiments revealed the suppression of the ER-associated degradation (ERAD) pathway and induction of apoptosis in podocytes that were stimulated with the supernatant of MCs cultured in high glucose conditions. In diabetic mice, ERAD inhibition resulted in exacerbated albuminuria, increased apoptosis in podocytes, and reduced nephrin expression associated with the downregulation of ERAD-related biomolecules. Flow cytometry analysis of podocytes isolated from MafB (a transcription factor known to be expressed in macrophages and podocytes)-GFP knock-in mice revealed that ERAD inhibition resulted in decreased nephrin phosphorylation. These findings suggest that an intraglomerular cross talk between MCs and podocytes can inhibit physiological ERAD processes and suppress the phosphorylation of nephrin in podocytes, which thereby lead to podocyte injury under diabetic conditions. Therapeutic intervention of the ERAD pathway through the cross talk between these cells is potentially a novel strategy for DKD.
Asunto(s)
Albuminuria/patología , Apoptosis , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/patología , Degradación Asociada con el Retículo Endoplásmico , Células Mesangiales/patología , Podocitos/patología , Albuminuria/etiología , Albuminuria/metabolismo , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Estrés del Retículo Endoplásmico , Factor de Transcripción MafB/metabolismo , Masculino , Células Mesangiales/metabolismo , Ratones , Ratones Obesos , Podocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de SeñalRESUMEN
Metabolic syndrome (MetS) is associated with chronic kidney disease and proteinuria. Previously, we reported that a synthetic serine protease inhibitor, camostat mesilate (CM), mitigated hypertension and proteinuria in rodent disease models. The present study evaluated the anti-hypertensive and anti-proteinuric effects of CM in MetS model rats (SHR/ND mcr-cp). Rats were divided into normal salt-fed (NS), high salt-fed (HS), HS and CM-treated (CM), and HS and hydralazine-treated (Hyd) groups. Rats were sacrificed after four weeks of treatment. Severe hypertension and proteinuria were observed in the HS group. Although CM and Hyd equally alleviated hypertension, CM suppressed proteinuria and glomerular sclerosis more efficiently than Hyd. The HS group revealed a decrease in podocyte number and podocyte-specific molecules, together with an increase in glomerular apoptotic cells and apoptosis-related proteins in the kidney. These changes were significantly attenuated by CM, but not by Hyd. Furthermore, CM ameliorated the apoptotic signals in murine cultured podocytes stimulated with the high glucose and aldosterone medium. In conclusion, CM could exert renoprotective effects in MetS model rats, together with the inhibition of podocyte apoptosis. Our study suggests that serine protease inhibition may become a new therapeutic strategy against MetS-related hypertension and renal injuries.
Asunto(s)
Apoptosis/efectos de los fármacos , Ésteres/farmacología , Guanidinas/farmacología , Síndrome Metabólico/patología , Podocitos/patología , Inhibidores de Proteasas/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Masculino , Síndrome Metabólico/complicaciones , Ratones , Proteinuria/tratamiento farmacológico , Proteinuria/etiología , Ratas Endogámicas SHR , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/etiologíaRESUMEN
BACKGROUND: Serial management of renal anemia using continuous erythropoietin receptor activator (CERA) throughout the peritoneal dialysis initiation period has rarely been reported. We investigated the efficacy and dosage of CERA treatment from pre- to post-peritoneal dialysis initiation for anemia management in patients with end-stage renal disease. METHODS: Twenty-six patients (13 men; mean age 60.9 years) who started peritoneal dialysis between April 2012 and April 2018 were investigated. Serial changes in hemoglobin levels, transferrin saturation and ferritin levels, CERA dosage, and the erythropoietin resistance index (ERI) over a 48 week period were retrospectively examined. RESULTS: Mean hemoglobin levels increased significantly from 10.5 g/dL at 24 weeks prior to the peritoneal dialysis initiation to 11.5 g/dL at 4 weeks post-initiation. The proportion of patients with hemoglobin levels ≥ 11 g/dL increased significantly after peritoneal dialysis initiation. The mean CERA dosage was 57.0 µg/month at 24 weeks prior to dialysis initiation, 86.5 µg/month at initiation, and 72.0 µg/month at 4 weeks post-initiation. Thus, the dosage tended to increase immediately before peritoneal dialysis initiation and then decreased thereafter. Hemoglobin levels were significantly lower, while the CERA dosage for maintaining hemoglobin levels and ERI tended to be higher at dialysis initiation in patients with diabetes than in those without diabetes. CONCLUSION: Treatment with CERA prior to and during the peritoneal dialysis initiation achieved fairly good anemia management in patients with and without diabetes. The CERA dosage could be reduced in patients without diabetes after dialysis initiation.
Asunto(s)
Anemia/tratamiento farmacológico , Eritropoyetina/uso terapéutico , Fallo Renal Crónico/complicaciones , Diálisis Peritoneal , Polietilenglicoles/uso terapéutico , Adulto , Anciano , Femenino , Hemoglobinas/análisis , Humanos , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Patients undergoing hemodialysis treatment have a poor prognosis, as many develop premature aging. Systemic inflammatory conditions often underlie premature aging phenotypes in uremic patients. We investigated whether angiopoietin-like protein 2 (ANGPTL 2), a factor that accelerates the progression of aging-related and noninfectious inflammatory diseases, was associated with increased mortality risk in hemodialysis patients. METHODS: We conducted a multicenter prospective cohort study of 412 patients receiving maintenance hemodialysis and evaluated the relationship between circulating ANGPTL2 levels and the risk for all-cause mortality. Circulating ANGPTL2 levels were log-transformed to correct for skewed distribution and analyzed as a continuous variable. RESULTS: Of 412 patients, 395 were included for statistical analysis. Time-to-event data analysis showed high circulating ANGPTL2 levels were associated with an increased risk for all-cause mortality after adjustment for age, sex, hemodialysis vintage, nutritional status, metabolic parameters and circulating high-sensitivity C-reactive protein levels {hazard ratio [HR] 2.04 [95% confidence interval (CI) 1.10-3.77]}. High circulating ANGPTL2 levels were also strongly associated with an increased mortality risk, particularly in patients with a relatively benign prognostic profile [HR 3.06 (95% CI 1.86-5.03)]. Furthermore, the relationship between circulating ANGPTL2 levels and mortality risk was particularly strong in patients showing few aging-related phenotypes, such as younger patients [HR 7.99 (95% CI 3.55-18.01)], patients with a short hemodialysis vintage [HR 3.99 (95% CI 2.85-5.58)] and nondiabetic patients [HR 5.15 (95% CI 3.19-8.32)]. CONCLUSION: We conclude that circulating ANGPTL2 levels are positively associated with mortality risk in patients receiving maintenance hemodialysis and that ANGPTL2 could be a unique marker for the progression of premature aging and subsequent mortality risk in uremic patients, except those with significant aging-related phenotypes.
Asunto(s)
Proteínas Similares a la Angiopoyetina/sangre , Biomarcadores/sangre , Enfermedades Renales/mortalidad , Diálisis Renal/mortalidad , Anciano , Proteína 2 Similar a la Angiopoyetina , Proteína C-Reactiva/análisis , Progresión de la Enfermedad , Femenino , Humanos , Enfermedades Renales/sangre , Enfermedades Renales/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Tasa de SupervivenciaRESUMEN
BACKGROUND: The inflammatory mediator calprotectin (CPT, myeloid-related protein 8/14) is known as an endogenous ligand contributing to pathophysiology in inflammatory diseases. Serum CPT reportedly became a potential biomarker in these conditions, though there is no report predicting the prognosis in hemodialysis patients. The aim of this study is to investigate the predictive role of serum CPT on mortality in hemodialysis patients. METHODS: We conducted a multicenter, observational cohort study of 388 Japanese subjects undergoing hemodialysis. Serum CPT were measured using an ELISA. The potential associations between serum CPT and clinical variables were cross-sectionally examined. Multivariate Cox regression was used to estimate the association between serum CPT, high-sensitivity C reactive protein (hs-CRP), white blood cell (WBC) count and mortality. Median follow-up was 6.6 years. RESULTS: The median CPT level was 6108 ng/ml (median in healthy subjects, 2800) at baseline. Serum CPT positively correlated with WBC count (ρ = 0.54, P < 0.001) and hs-CRP values (ρ = 0.35, P < 0.001). In multivariate analysis, hs-CRP was an independent predictor of all-cause mortality after adjusting confounding factors (middle vs. low: hazard ratio [HR] 2.09, 95% confidence interval [CI] 1.23-3.66; high vs. low: 2.47, 1.40-4.47). In the analysis by stratum of phosphate levels, elevated CPT levels were significantly associated with all-cause mortality in the highest tertile (18.1; 3.15-345.9) among the high-phosphate group, but not among the low-phosphate group. CONCLUSIONS: Serum CPT would become a potential predictive marker on mortality in hemodialysis patients with high-phosphate levels.
Asunto(s)
Fallo Renal Crónico/sangre , Fallo Renal Crónico/mortalidad , Complejo de Antígeno L1 de Leucocito/sangre , Fosfatos/sangre , Anciano , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Enfermedad Crónica , Femenino , Estudios de Seguimiento , Humanos , Inflamación/sangre , Estimación de Kaplan-Meier , Fallo Renal Crónico/terapia , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Diálisis Renal , Estudios RetrospectivosRESUMEN
AIM: Metabolic acidosis occurs due to insufficient urinary ammonium excretion as chronic kidney disease (CKD) advances. Because obese subjects tend to have excessive consumption of protein and sodium chloride, they are prone to chronic acid loading and may therefore be predisposed to acid-induced kidney injury. We investigated the involvement of obesity in ammoniagenesis within damaged kidneys. METHODS: In the clinical study, urinary ammonium excretion was compared between 13 normal-weight and 15 overweight/obese CKD outpatients whose creatinine clearance was higher than 25 mL/min. For animal experiments, NH4 Cl was loaded to KKAy/TaJcl (KKAy), a metabolic syndrome model, and control BALB/c mice for 20 weeks. Kidney injury was evaluated through histological analysis and the expression of proinflammatory markers. RESULTS: Urinary ammonium excretion was lower in overweight/obese patients than in normal-weight patients, while intakes of protein and sodium chloride were higher in overweight/obese patients, implying that subclinical metabolic acidosis occurs in overweight/obese patients. The increase in urinary ammonium excretion induced by NH4 Cl loading was attenuated in KKAy mice after 16 weeks, whereas the increase was maintained in BALB/c mice throughout the study period. Histological study and real-time polymerase chain reaction analysis showed proximal tubular injury and enhanced expression levels of neutrophil gelatinase-associated lipocalin (NGAL) protein and messenger RNA, respectively, in KKAy mice but not in BALB/c mice. Finally, urinary NGAL concentration was higher in overweight/obese patients than in normal-weight patients in the early stage of CKD. CONCLUSION: Obesity could facilitate the induction of subclinical metabolic acidosis and acid accumulation in the kidney, which may potentially exacerbate kidney injury in CKD patients.
Asunto(s)
Amoníaco/orina , Túbulos Renales/patología , Obesidad/orina , Sobrepeso/orina , Insuficiencia Renal Crónica/orina , Acidosis/etiología , Ácidos/orina , Anciano , Animales , Femenino , Humanos , Lipocalina 2/orina , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana EdadRESUMEN
The interplay between oxidative stress, inflammation, and tissue fibrosis leads to the progression of chronic kidney disease (CKD). Edoxaban, an activated blood coagulation factor Xa (FXa) inhibitor, ameliorates kidney disease by suppressing inflammation and tissue fibrosis in animal models. Interestingly, rivaroxaban, another FXa inhibitor, suppresses oxidative stress induced by FXa. Thus, FXa inhibitors could be multitargeted drugs for the three aforementioned risk factors for the progression of CKD. However, the exact mechanism responsible for eliciting the antioxidant effect of FXa inhibitors remains unclear. In this study, the antioxidant effect of edoxaban was evaluated. First, the intracellular antioxidant properties of edoxaban were evaluated using human proximal tubular cells (HK-2 cells). Next, direct radical scavenging activity was measured using the electron spin resonance and fluorescence analysis methods. Results show that edoxaban exhibited antioxidant effects on oxidative stress induced by FXa, indoxyl sulfate, and angiotensin II in HK-2 cells, as well as the FXa inhibitory activity, was involved in part of the antioxidant mechanism. Moreover, edoxaban exerted its antioxidative effect through its structure-specific direct radical scavenging activity. Edoxaban exerts antioxidant effects by inhibiting FXa and through direct radical-scavenging activity, and thus, may serve as multitargeted drugs for the three primary risk factors associated with progression of CKD.
Asunto(s)
Inhibidores del Factor Xa/farmacología , Depuradores de Radicales Libres/farmacología , Piridinas/farmacología , Tiazoles/farmacología , Anticoagulantes/química , Anticoagulantes/farmacología , Línea Celular , Espectroscopía de Resonancia por Spin del Electrón , Inhibidores del Factor Xa/química , Depuradores de Radicales Libres/química , Humanos , Radical Hidroxilo/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Piridinas/química , Especies Reactivas de Oxígeno/metabolismo , Tiazoles/químicaRESUMEN
Cisplatin (CDDP) is a widely-used chemotherapeutic drug for solid tumors, but its nephrotoxicity is a major dose-limiting factor. Doxycycline (Dox) is a tetracycline antibiotic that has been commonly used in a variety of infections. Dox has been shown to possess several other properties, including antitumor, anti-inflammatory, antioxidative, and matrix metalloproteinase (MMP)-inhibiting actions. We, therefore, investigated whether Dox exerts renoprotective effects in CDDP-induced acute kidney injury (AKI). Twelve-week-old male C57BL/6J mice were divided into the following groups: 1) control, 2) Dox (2 mg/ml in drinking water), 3) CDDP (25 mg/kg body weight, intraperitoneally), and 4) CDDP+Dox. After seven days of pretreatment with Dox, CDDP was administered and the animals were killed at day 1 or day 3. We evaluated renal function along with renal histological damage, inflammation, oxidative stress, and apoptosis. MMP and serine protease activities in the kidney tissues were assessed using zymography. Administration of CDDP exhibited renal dysfunction and caused histological damage predominantly in the proximal tubules. Dox did not affect either expression of CDDP transporters or the accumulation of CDDP in renal tissues; however, it significantly ameliorated renal dysfunction and histological changes together with reduced detrimental responses, such as oxidative stress and inflammation in the kidneys. Furthermore, Dox inhibited the activity of MMP-2 and MMP-9, as well as serine proteases in the kidney tissues. Finally, Dox markedly mitigated apoptosis in renal tubules. Thus, Dox ameliorated CDDP-induced AKI through its pleiotropic effects. Our results suggest that Dox may become a novel strategy for the prevention of CDDP-induced AKI in humans.
Asunto(s)
Lesión Renal Aguda/prevención & control , Cisplatino , Doxiciclina/farmacología , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Citoprotección , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacologíaRESUMEN
BACKGROUND: Liddle's syndrome is a rare monogenic form of hypertension caused by truncating or missense mutations in the C termini of the epithelial sodium channel (ENaC) ß or γ subunits. Patients with this syndrome present with early onset of hypertension, hypokalemia, metabolic alkalosis, hyporeninemia and hypoaldosteronism, and a potassium-sparing diuretics (triamterene or amiloride) can drastically improves the disease condition. Although elderly patients having these characteristics were considered to have Liddle's syndrome or Liddle's-like syndrome, no previous report has indicated that Liddle's-like syndrome could be caused by nephrotic syndrome of primary glomerular disease, which is characterized by urinary excretion of > 3 g of protein/day plus edema and hypoalbuminemia, or has explained how the activity function of ENaC could be affected in the setting of high proteinuria. CASE PRESENTATION: A 65-year-old Japanese man presented with nephrotic syndrome. He had no remarkable family history, but had a medical history of hypertension and hyperlipidemia. On admission, hypertension, spironolactone-resistant hypokalemia (2.43 mEq/l), hyporeninemic hypoaldosteronism, and metabolic alkalosis, which suggested Liddle's syndrome, were observed. Treatment with triamterene together with a steroid for nephrotic syndrome resulted in rapid and remarkable effective on improvements of hypertension, hypokalemia, and edema of the lower extremities. Renal biopsy revealed membranous nephropathy (MN) as the cause of nephrotic syndrome, and advanced gastric cancer was identified on screening examination for cancers that could be associated with the development of MN. After total gastrectomy, triamterene was not required and proteinuria decreased. A mutation in the ß or γ subunits of the ENaC gene was not identified. CONCLUSION: We reported for the first time a case of Liddle's-like syndrome associated with nephrotic syndrome secondary to MN. Aberrant activation of ENaC was suggested transient during the period of high proteinuria, and the activation was reversible with a decrease in proteinuria.
Asunto(s)
Glomerulonefritis Membranosa/diagnóstico , Síndrome de Liddle/diagnóstico , Síndrome Nefrótico/diagnóstico , Anciano , Glomerulonefritis Membranosa/complicaciones , Glomerulonefritis Membranosa/genética , Humanos , Síndrome de Liddle/etiología , Síndrome de Liddle/genética , Masculino , Síndrome Nefrótico/etiología , Síndrome Nefrótico/genéticaRESUMEN
Microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme that converts prostaglandin H2 to prostaglandin E2 (PGE2), plays an important role in a variety of inflammatory diseases. We investigated the contribution of mPGES-1 to renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) for 7 days using wild-type (WT) and mPGES-1 knockout (KO) mice. UUO induced increased mRNA and protein expression of mPGES-1 and cyclooxygenase-2 in WT mice. UUO was associated with increased renal PGE2 content and upregulated PGE2 receptor (EP) 4 expression in obstructed kidneys of both WT and mPGES-1 KO mice; EP4 expression levels were higher in KO mice with UUO than those in WT mice. Protein expression of NLRP3 inflammasome components ASC and interleukin-1ß was significantly increased in obstructed kidneys of KO mice compared with that in WT mice. mRNA expression levels of fibronectin, collagen III, and transforming growth factor-ß1 (TGF-ß1) were significantly higher in obstructed kidneys of KO mice than that in WT mice. In KO mice, protein expression of fibronectin and collagen III was markedly increased in obstructed kidneys compared with WT mice, which was associated with increased phosphorylation of protein kinase B (AKT). EP4 agonist CAY10598 attenuated increased expression of collagen I and fibronectin induced by TGF-ß1 in inner medullary collecting duct 3 cells. Moreover, CAY10598 prevented the activation of NLRP3 inflammasomes induced by angiotensin II in human proximal tubule cells (HK2). In conclusion, these findings suggested that mPGES-1 exerts a potentially protective effect against renal fibrosis and inflammation induced by UUO in mice.
Asunto(s)
Inflamasomas/metabolismo , Inflamación/metabolismo , Prostaglandina-E Sintasas/deficiencia , Prostaglandina-E Sintasas/metabolismo , Obstrucción Ureteral/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Inflamasomas/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirrolidinonas/farmacología , Tetrazoles/farmacología , Obstrucción Ureteral/patologíaRESUMEN
Thermal therapy has become a nonpharmacological therapy in clinical settings, especially for cardiovascular diseases. However, the practical role of thermal therapy on chronic kidney disease remains elusive. We performed the present study to investigate whether a modified thermal protocol, repeated mild thermal stimulation (MTS), could affect renal damages in chronic kidney disease using a mouse renal ablation model. Mice were subjected to MTS or room temperature (RT) treatment once daily for 4 wk after subtotal nephrectomy (Nx) or sham operation (Sh). We revealed that MTS alleviated renal impairment as indicated by serum creatinine and albuminuria in Nx groups. In addition, the Nx + MTS group showed attenuated tubular histological changes and reduced urinary neutrophil gelatinase-associated lipocalin excretion approximately by half compared with the Nx + RT group. Increased apoptotic signaling, such as TUNEL-positive cell count and cleavage of caspase 3, as well as enhanced oxidative stress were significantly reduced in the Nx + MTS group compared with the Nx + RT group. These changes were accompanied with the restoration of kidney Mn-SOD levels by MTS. Heat shock protein 27, a key molecular chaperone, was phosphorylated by MTS only in Nx kidneys rather than in Sh kidneys. MTS also tended to increase the phosphorylation of p38 MAPK and Akt in Nx kidneys, possibly associated with the activation of heat shock protein 27. Taken together, these results suggest that modified MTS can protect against renal injury in a rodent model of chronic kidney disease.
Asunto(s)
Albuminuria/terapia , Hipertermia Inducida/métodos , Riñón/fisiopatología , Insuficiencia Renal Crónica/terapia , Albuminuria/fisiopatología , Animales , Apoptosis/fisiología , Creatinina/sangre , Modelos Animales de Enfermedad , Pruebas de Función Renal , Lipocalinas/orina , Masculino , Ratones , Nefrectomía , Estrés Oxidativo/fisiología , Insuficiencia Renal Crónica/fisiopatología , Resultado del TratamientoRESUMEN
Emerging evidence has suggested that aldosterone has direct deleterious effects on the kidney independently of its hemodynamic effects. However, the detailed mechanisms of these direct effects remain to be elucidated. We have previously reported that camostat mesilate (CM), a synthetic serine protease inhibitor, attenuated kidney injuries in Dahl salt-sensitive rats, remnant kidney rats, and unilateral ureteral obstruction rats, suggesting that some serine proteases would be involved in the pathogenesis of kidney injuries. The current study was conducted to investigate the roles of serine proteases and the beneficial effects of CM in aldosterone-related kidney injuries. We observed a serine protease that was activated by aldosterone/salt in rat kidney lysate, and identified it as plasmin with liquid chromatography-tandem mass spectrometry. Plasmin increased pro-fibrotic and inflammatory gene expressions in rat renal fibroblast cells. CM inhibited the protease activity of plasmin and suppressed cell injury markers induced by plasmin in the fibroblast cells. Furthermore, CM ameliorated glomerulosclerosis and interstitial fibrosis in the kidney of aldosterone/salt-treated rats. Our findings indicate that plasmin has important roles in kidney injuries that are induced by aldosterone/salt, and that serine protease inhibitor could provide a new strategy for the treatment of aldosterone-associated kidney diseases in humans.
Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Aldosterona/toxicidad , Antifibrinolíticos/uso terapéutico , Fibrinolisina/metabolismo , Inhibidores de Serina Proteinasa/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Animales , Antifibrinolíticos/farmacología , Fibrinolisina/antagonistas & inhibidores , Masculino , Ratas , Ratas Sprague-Dawley , Inhibidores de Serina Proteinasa/farmacologíaRESUMEN
We previously reported that camostat mesilate (CM) had renoprotective and antihypertensive effects in rat CKD models. In this study, we examined if CM has a distinct renoprotective effect from telmisartan (TE), a renin-angiotensin-aldosterone system (RAS) inhibitor, on the progression of CKD. We evaluated the effect of CM (400 mg/kg/day) and/or TE (10 mg/kg/day) on renal function, oxidative stress, renal fibrosis, and RAS components in the adenine-induced rat CKD model following 5-weeks treatment period. The combination therapy with CM and TE significantly decreased the adenine-induced increase in serum creatinine levels compared with each monotherapy, although all treatment groups showed similar reduction in blood pressure. Similarly, adenine-induced elevation in oxidative stress markers and renal fibrosis markers were significantly reduced by the combination therapy relative to each monotherapy. Furthermore, the effect of the combination therapy on plasma renin activity (PRA) and plasma aldosterone concentration (PAC) was similar to that of TE monotherapy, and CM had no effect on both PRA and PAC, suggesting that CM has a distinct pharmacological property from RAS inhibition. Our findings indicate that CM could be a candidate drug for an add-on therapy for CKD patients who had been treated with RAS inhibitors.
Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Antihipertensivos/administración & dosificación , Bencimidazoles/administración & dosificación , Benzoatos/administración & dosificación , Gabexato/análogos & derivados , Insuficiencia Renal Crónica/tratamiento farmacológico , Inhibidores de Serina Proteinasa/administración & dosificación , Aldosterona/sangre , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Antihipertensivos/farmacología , Bencimidazoles/farmacología , Benzoatos/farmacología , Presión Sanguínea/efectos de los fármacos , Creatinina/sangre , Modelos Animales de Enfermedad , Quimioterapia Combinada , Ésteres , Fibrosis/tratamiento farmacológico , Gabexato/administración & dosificación , Gabexato/farmacología , Guanidinas , Riñón/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Renina/sangre , Sistema Renina-Angiotensina/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , TelmisartánRESUMEN
BACKGROUND & AIMS: Microsomal prostaglandin E synthase-2 (mPGES-2) deletion does not influence in vivo PGE2 production and the function of this enzyme remains elusive. The present study was undertaken to investigate the role of mPGES-2 in streptozotocin (STZ)-induced type-1 diabetes and organ injuries. METHODS: mPGES-2 wild type (WT) and knockout (KO) mice were treated by a single intraperitoneal injection of STZ at the dose of 120 mg/kg to induce type-1 diabetes. Subsequently, glycemic status and organ injuries were evaluated. RESULTS: Following 4 days of STZ administration, mPGES-2 KO mice exhibited severe lethality in contrast to the normal phenotype observed in WT control mice. In a separate experiment, the analysis was performed at day 3 of the STZ treatment in order to avoid lethality. Blood glucose levels were similar between STZ-treated KO and WT mice. However, the livers of KO mice were yellowish with severe global hepatic steatosis, in parallel with markedly elevated liver enzymes and remarkable stomach expansion. However, the morphology of the other organs was largely normal. The STZ-treated KO mice displayed extensive hepatocyte apoptosis compared with WT mice in parallel with markedly enhanced inflammation and oxidative stress. More interestingly, a liver-specific 50% upregulation of GLUT2 was found in the KO mice accompanied with a markedly enhanced STZ accumulation and this induction of GLUT2 was likely to be associated with the insulin/SREBP-1c pathway. Primary cultured hepatocytes of KO mice exhibited an increased sensitivity to STZ-induced injury and higher cellular STZ content, which was markedly blunted by the selective GLUT2 inhibitor phloretin. CONCLUSIONS: mPGES-2 deletion enhanced STZ-induced liver toxicity possibly via GLUT2-mediated STZ uptake, independently of diabetes mellitus.