Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Perfusion ; 37(2): 144-151, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33570010

RESUMEN

INTRODUCTION: Arterial filter is the part of the cardiopulmonary bypass circuit where blood cells are exposed to high mechanical stress and where cellular aggregates may fasten in large quantities. The aim of this study was to analyse blood cell adhesiveness in the arterial filter through scanning electron microscopy and real-time PCR assay. METHODS: Prospective, clinical and observational study performed on 28 patients undergoing cardiac surgery with cardiopulmonary bypass. Arterial filters were analysed by scanning electron microscopy. Real-time PCR assay was performed in extracted material from the arterial filters for analysis of platelet GPIb and CD45 leucocyte gene expression. Blood coagulation was analysed during cardiopulmonary bypass. Patients were followed until hospital discharge or 28 days after surgery. RESULTS: All studied arterial filters used in the subject patients showed a degree of adhesion from blood elements at scanning electron microscopy. All studied filters were positive for platelets GPIb gene expression and 15% had CD45 leucocyte gene expression. The GPIb platelet gene expression in blood lowered at the end of cardiopulmonary bypass (p = 0.019). There was negative correlation between blood GPIb platelet gene expression and Clot SR (HEPSCREEN2 ReoRox®) (rho = 0.635; p = 0.027). The filter fields count was correlated to the D-dimer dosage (rho = 0.828; p < 0.001). CONCLUSION: There was adhesion of blood elements, especially nucleated platelets, on all arterial filters studied. Although the arterial filter worked as a safety device, that possibly prevented arterial embolisation, it may also have caused greater hyperfibrinolysis during cardiopulmonary bypass.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Puente Cardiopulmonar , Células Sanguíneas , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Adhesión Celular , Humanos , Microscopía Electrónica de Rastreo , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
PLoS One ; 15(8): e0237305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32822421

RESUMEN

Diabetes can elicit direct deleterious effects on the myocardium, independent of coronary artery disease or hypertension. These cardiac disturbances are termed diabetic cardiomyopathy showing increased risk of heart failure with or without reduced ejection fraction. Presently, there is no specific treatment for this type of cardiomyopathy and in the case of type I diabetes, it may start in early childhood independent of glycemic control. We hypothesized that alterations in isolated myocyte contractility and cardiac function are present in the early stages of experimental diabetes in rats before overt changes in myocardium structure occur. Diabetes was induced by single-dose injection of streptozotocin (STZ) in rats with data collected from control and diabetic animals 3 weeks after injection. Left ventricle myocyte contractility was measured by single-cell length variation under electrical stimulation. Cardiac function and morphology were studied by high-resolution echocardiography with pulsed-wave tissue Doppler imaging (TDI) measurements and three-lead surface electrocardiogram. Triglycerides, cholesterol and liver enzyme levels were measured from plasma samples obtained from both groups. Myocardial collagen content and perivascular fibrosis of atria and ventricle were studied by histological analysis after picrosirius red staining. Diabetes resulted in altered contractility of isolated cardiac myocytes with increased contraction and relaxation time intervals. Echocardiography showed left atrium dilation, increased end-diastolic LV and posterior wall thickness, with reduced longitudinal systolic peak velocity (S') of the septum mitral annulus at the apical four-chamber view obtained by TDI. Triglycerides, aspartate aminotransferase and alkaline phosphatase were elevated in diabetic animals. Intertitial collagen content was higher in atria of both groups and did not differ among control and diabetic animals. Perivascular intramyocardial arterioles collagen did not differ between groups. These results suggest that alterations in cardiac function are present in the early phase in this model of diabetes type 1 and occur before overt changes in myocardium structure appear as evaluated by intersticial collagen deposition and perivascular fibrosis of intramyocardial arterioles.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Contracción Miocárdica , Miocitos Cardíacos/patología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/patología , Cardiomiopatías Diabéticas/inducido químicamente , Cardiomiopatías Diabéticas/patología , Ratas , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA