Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunity ; 37(1): 171-86, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22749822

RESUMEN

Mononuclear phagocytes are an important component of an innate immune system perceived as a system ready to react upon encounter of pathogens. Here, we show that in response to microbial stimulation, mononuclear phagocytes residing in nonmucosal lymphoid organs of germ-free mice failed to induce expression of a set of inflammatory response genes, including those encoding the various type I interferons (IFN-I). Consequently, NK cell priming and antiviral immunity were severely compromised. Whereas pattern recognition receptor signaling and nuclear translocation of the transcription factors NF-κB and IRF3 were normal in mononuclear phagocytes of germ-free mice, binding to their respective cytokine promoters was impaired, which correlated with the absence of activating histone marks. Our data reveal a previously unrecognized role for postnatally colonizing microbiota in the introduction of chromatin level changes in the mononuclear phagocyte system, thereby poising expression of central inflammatory genes to initiate a powerful systemic immune response during viral infection.


Asunto(s)
Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Metagenoma/inmunología , Fagocitos/inmunología , Animales , Citocinas/biosíntesis , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Fagocitos/metabolismo , Virosis/inmunología
2.
J Virol ; 90(4): 2031-8, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656686

RESUMEN

UNLABELLED: Interferon beta (IFN-ß) is a key component of cellular innate immunity in mammals, and it constitutes the first line of defense during viral infection. Studies with cultured cells previously showed that almost all nucleated cells are able to produce IFN-ß to various extents, but information about the in vivo sources of IFN-ß remains incomplete. By applying immunohistochemistry and employing conditional-reporter mice that express firefly luciferase under the control of the IFN-ß promoter in either all or only distinct cell types, we found that astrocytes are the main producers of IFN-ß after infection of the brain with diverse neurotropic viruses, including rabies virus, Theiler's murine encephalomyelitis virus, and vesicular stomatitis virus. Analysis of a panel of knockout mouse strains revealed that sensing of viral components via both RIG-I-like helicases and Toll-like receptors contributes to IFN induction in the infected brain. A genetic approach to permanently mark rabies virus-infected cells in the brain showed that a substantial number of astrocytes became labeled and, therefore, must have been infected by the virus at least transiently. Thus, our results strongly indicate that abortive viral infection of astrocytes can trigger pattern recognition receptor signaling events which result in secretion of IFN-ß that confers antiviral protection. IMPORTANCE: Previous work indicated that astrocytes are the main producers of IFN after viral infection of the central nervous system (CNS), but it remained unclear how astrocytes might sense those viruses which preferentially replicate in neurons. We have now shown that virus sensing by both RIG-I-like helicases and Toll-like receptors is involved. Our results further demonstrate that astrocytes get infected in a nonproductive manner under these conditions, indicating that abortive infection of astrocytes plays a previously unappreciated role in the innate antiviral defenses of the CNS.


Asunto(s)
Astrocitos/inmunología , Encéfalo/inmunología , Encéfalo/virología , Interferón beta/metabolismo , Virus de la Rabia/inmunología , Theilovirus/inmunología , Vesiculovirus/inmunología , Animales , Fusión Artificial Génica , Astrocitos/virología , Perfilación de la Expresión Génica , Genes Reporteros , Inmunohistoquímica , Luciferasas/análisis , Luciferasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Inmunológicos/metabolismo , Transducción de Señal
3.
J Virol ; 87(12): 6925-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576514

RESUMEN

The innate host defense against influenza virus is largely dependent on the type I interferon (IFN) system. However, surprisingly little is known about the cellular source of IFN in the infected lung. To clarify this question, we employed a reporter mouse that contains the firefly luciferase gene in place of the IFN-ß-coding region. IFN-ß-producing cells were identified either by simultaneous immunostaining of lungs for luciferase and cellular markers or by generating conditional reporter mice that express luciferase exclusively in defined cell types. Two different strains of influenza A virus were employed that either do or do not code for nonstructural protein 1 (NS1), which strongly suppresses innate immune responses of infected cells. We found that epithelial cells and lung macrophages, which represent the prime host cells for influenza viruses, showed vigorous IFN-ß responses which, however, were severely reduced and delayed if the infecting virus was able to produce NS1. Interestingly, CD11c(+) cell populations that were either expressing or lacking macrophage markers produced the bulk of IFN-ß at 48 h after infection with wild-type influenza A virus. Our results demonstrate that the virus-encoded IFN-antagonistic factor NS1 disarms specifically epithelial cells and lung macrophages, which otherwise would serve as main mediators of the early response against infection by influenza virus.


Asunto(s)
Virus de la Influenza A/inmunología , Proteínas no Estructurales Virales/metabolismo , Animales , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Inmunidad Innata , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Interferón beta/inmunología , Interferón beta/metabolismo , Luciferasas , Pulmón/citología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Proteínas no Estructurales Virales/genética
4.
J Innate Immun ; 16(1): 226-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527452

RESUMEN

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Asunto(s)
Adenoviridae , Citocinas , Factor 3 Regulador del Interferón , Lipopolisacáridos , Macrófagos , Ratones Noqueados , Animales , Ratones , Lipopolisacáridos/inmunología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Macrófagos/inmunología , Citocinas/metabolismo , Ratones Endogámicos C57BL , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Vectores Genéticos , Infecciones por Adenoviridae/inmunología , Interferón Tipo I/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Interferón beta/metabolismo
5.
J Virol ; 86(20): 11223-30, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875966

RESUMEN

Beta interferon (IFN-ß) is a major component of innate immunity in mammals, but information on the in vivo source of this cytokine after pathogen infection is still scarce. To identify the cell types responsible for IFN-ß production during viral encephalitis, we used reporter mice that express firefly luciferase under the control of the IFN-ß promoter and stained organ sections with luciferase-specific antibodies. Numerous luciferase-positive cells were detected in regions of La Crosse virus (LACV)-infected mouse brains that contained many infected cells. Double-staining experiments with cell-type-specific markers revealed that similar numbers of astrocytes and microglia of infected brains were luciferase positive, whereas virus-infected neurons rarely contained detectable levels of luciferase. Interestingly, if a mutant LACV unable of synthesizing the IFN-antagonistic factor NSs was used for challenge, the vast majority of the IFN-ß-producing cells in infected brains were astrocytes rather than microglia. Similar conclusions were reached in a second series of experiments in which conditional reporter mice expressing the luciferase reporter gene solely in defined cell types were infected with wild-type or mutant LACV. Collectively, our data suggest that glial cells rather than infected neurons represent the major source of IFN-ß in LACV-infected mouse brains. They further indicate that IFN-ß synthesis in astrocytes and microglia is differentially affected by the viral IFN antagonist, presumably due to differences in LACV susceptibility of these two cell types.


Asunto(s)
Astrocitos/inmunología , Encefalitis de California/inmunología , Interferón beta/biosíntesis , Virus La Crosse/inmunología , Microglía/inmunología , Animales , Astrocitos/metabolismo , Astrocitos/virología , Encéfalo/metabolismo , Encéfalo/virología , Interferón beta/genética , Interferón beta/inmunología , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microglía/virología , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/virología , Regiones Promotoras Genéticas
6.
J Exp Med ; 214(5): 1239-1248, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28396461

RESUMEN

Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population.


Asunto(s)
Virus de la Influenza A/inmunología , Proteínas de Resistencia a Mixovirus/inmunología , Nucleoproteínas/genética , Animales , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Femenino , Humanos , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/inmunología , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas de Resistencia a Mixovirus/genética
7.
PLoS One ; 9(11): e112469, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25398130

RESUMEN

The human intestinal parasite Schistosoma mansoni causes a chronic disease, schistosomiasis or bilharzia. According to the current literature, the parasite induces vigorous immune responses that are controlled by Th2 helper cells at the expense of Th1 helper cells. The latter cell type is, however, indispensable for anti-viral immune responses. Remarkably, there is no reliable literature among 230 million patients worldwide describing defective anti-viral immune responses in the upper respiratory tract, for instance against influenza A virus or against respiratory syncitial virus (RSV). We therefore re-examined the immune response to a human isolate of S. mansoni and challenged mice in the chronic phase of schistosomiasis with influenza A virus, or with pneumonia virus of mice (PVM), a mouse virus to model RSV infections. We found that mice with chronic schistosomiasis had significant, systemic immune responses induced by Th1, Th2, and Th17 helper cells. High serum levels of TNF-α, IFN-γ, IL-5, IL-13, IL-2, IL-17, and GM-CSF were found after mating and oviposition. The lungs of diseased mice showed low-grade inflammation, with goblet cell hyperplasia and excessive mucus secretion, which was alleviated by treatment with an anti-TNF-α agent (Etanercept). Mice with chronic schistosomiasis were to a relative, but significant extent protected from a secondary viral respiratory challenge. The protection correlated with the onset of oviposition and TNF-α-mediated goblet cell hyperplasia and mucus secretion, suggesting that these mechanisms are involved in enhanced immune protection to respiratory viruses during chronic murine schistosomiasis. Indeed, also in a model of allergic airway inflammation mice were protected from a viral respiratory challenge with PVM.


Asunto(s)
Coinfección/inmunología , Virus de la Influenza A/inmunología , Virus de la Neumonía Murina/inmunología , Infecciones por Orthomyxoviridae/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Animales , Lavado Broncoalveolar , Citocinas/sangre , Etanercept , Citometría de Flujo , Pulmón/patología , Ratones , Mucina 5AC/metabolismo , Mucina 5B/metabolismo , Infecciones por Orthomyxoviridae/patología , Estadísticas no Paramétricas , Linfocitos T Colaboradores-Inductores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA