Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photosynth Res ; 126(1): 161-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25588957

RESUMEN

The conversion of solar energy (SEC) to storable chemical energy by photosynthesis has been performed by photosynthetic organisms, including oxygenic cyanobacteria for over 3 billion years. We have previously shown that crude thylakoid membranes from the cyanobacterium Synechocytis sp. PCC 6803 can reduce the electron transfer (ET) protein cytochrome c even in the presence of the PSII inhibitor DCMU. Mutation of lysine 238 of the Photosystem II D1 protein to glutamic acid increased the cytochrome reduction rates, indicating the possible position of this unknown ET pathway. In this contribution, we show that D1-K238E is rather unique, as other mutations to K238, or to other residues in the same vicinity, are not as successful in cytochrome c reduction. This observation indicates the sensitivity of ET reactions to minor changes. As the next step in obtaining useful SEC from biological material, we describe the use of crude Synechocystis membranes in a bio-photovoltaic cell containing an N-acetyl cysteine-modified gold electrode. We show the production of significant current for prolonged time durations, in the presence of DCMU. Surprisingly, the presence of cytochrome c was not found to be necessary for ET to the bio-voltaic cell.


Asunto(s)
Fuentes de Energía Bioeléctrica , Mutación , Complejo de Proteína del Fotosistema II/genética , Synechocystis/metabolismo , Tilacoides/metabolismo , Acetilcisteína/química , Citocromos c/metabolismo , Técnicas Electroquímicas , Electrodos , Hidrógeno/metabolismo , Oxidación-Reducción , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/genética
2.
Nat Commun ; 9(1): 2168, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867170

RESUMEN

Oxygenic photosynthetic organisms perform solar energy conversion of water and CO2 to O2 and sugar at a broad range of wavelengths and light intensities. These cells also metabolize sugars using a respiratory system that functionally overlaps the photosynthetic apparatus. In this study, we describe the harvesting of photocurrent used for hydrogen production from live cyanobacteria. A non-harmful gentle physical treatment of the cyanobacterial cells enables light-driven electron transfer by an endogenous mediator to a graphite electrode in a bio-photoelectrochemical cell, without the addition of sacrificial electron donors or acceptors. We show that the photocurrent is derived from photosystem I and that the electrons originate from carbohydrates digested by the respiratory system. Finally, the current is utilized for hydrogen evolution on the cathode at a bias of 0.65 V. Taken together, we present a bio-photoelectrochemical system where live cyanobacteria produce stable photocurrent that can generate hydrogen.


Asunto(s)
Cianobacterias/metabolismo , Hidrógeno/metabolismo , Luz , Consumo de Oxígeno/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas Bacterianas/metabolismo , Cianobacterias/ultraestructura , Transporte de Electrón/efectos de la radiación , Microscopía Electrónica de Rastreo , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/metabolismo , Synechocystis/ultraestructura
3.
Nat Commun ; 7: 12552, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27550091

RESUMEN

Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.


Asunto(s)
Procesos Fotoquímicos , Fotosíntesis/efectos de la radiación , Energía Solar , Luz Solar , Agua/metabolismo , Algoritmos , Hidrógeno/metabolismo , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Spinacia oleracea/metabolismo , Spinacia oleracea/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
4.
PLoS One ; 10(4): e0122616, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25915422

RESUMEN

Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 µA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 µA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 µA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.


Asunto(s)
Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/fisiología , Tilacoides/fisiología , Electrodos , Transporte de Electrón/fisiología , Electrones , Luz , Luz Solar , Synechocystis/metabolismo , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA