Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Chemistry ; : e202401932, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837549

RESUMEN

Arylethynyl-substituted dipyrrolyldiketone BF2 complexes as anion-responsive π-electronic molecules exhibited characteristic electronic properties derived from conformation changes upon anion binding, which caused an increase in UV/vis absorption and associated two-photon absorption.  The anion complexes showed expanded planar regions assisted by intramolecular interactions, resulting in charge-by-charge ion-pairing assemblies in the solid state.

2.
Photochem Photobiol Sci ; 23(6): 1041-1050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714585

RESUMEN

Near-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene (fDAE) derivative were investigated by time-resolved absorption and fluorescence spectroscopies. Prescreening with quantum chemical calculation predicted that a derivative with methylthienyl groups (mt-fDAE) in the closed-ring isomer has a two-photon absorption cross-section larger than 1000 GM, which was experimentally verified by Z-scan measurements and excitation power dependence in transient absorption. Comparison of transient absorption spectra under one-photon and simultaneous two-photon excitation conditions revealed that the closed-ring isomer of mt-fDAE populated into higher excited states deactivates following three pathways on a timescale of ca. 200 fs: (i) the cycloreversion reaction more efficient than that by the one-photon process, (ii) internal conversion into the S1 state, and (iii) relaxation into a lower state (S1' state) different from the S1 state. Time-resolved fluorescence measurements demonstrated that this S1' state is relaxed to the S1 state with the large emission probability. These findings obtained in the present work contribute to extension of the ON-OFF switching capability of fDAE to the biological window and application to super-resolution fluorescence imaging in a two-photon manner.

3.
Phys Chem Chem Phys ; 26(9): 7837-7843, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38375890

RESUMEN

A series of neutral Ir(2-phenylpyridine)3 derivatives substituted on the para-position of the pyridyl ligands with a π-conjugated substituent possessing different donor abilities has been prepared. Their two-photon absorption properties have been determined using the Z-scan technique. Such simple iridium(III) neutral complexes, which are easy to synthesize, show good two-photon absorption activity, with relevant TPA cross sections (the best is 750 GM), giving rise to multifunctional chromophores, since they present also high second-order NLO properties.

4.
Angew Chem Int Ed Engl ; 63(22): e202403886, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38545689

RESUMEN

The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.

5.
Phys Chem Chem Phys ; 24(19): 11520-11526, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35416189

RESUMEN

We report that diphenylhexatriene (DPH) and its ring-substituted derivatives act as emitter molecules in triplet-triplet annihilation photon upconversion (TTA-UC). A palladium porphyrin derivative, meso-tetraphenyl-tetrabenzoporphine palladium complex (PdTPBP), which acts as a sensitiser in TTA-UC, and DPH derivatives were dissolved in tetrahydrofuran (THF). The solution showed blue-green to green UC emission under photoexcitation at 640 nm in a nitrogen atmosphere. The UC quantum efficiency (ηUC) values of the DPHs were estimated, with (E,E,E)-1,6-bis[4-(di-2-picolylamino)phenyl]hexa-1,3,5-triene (pico DPH) showing the highest. In addition, the quantum yields of triplet energy transfer (TET) and triplet-triplet annihilation (TTA), which are elementary processes in TTA-UC, were estimated, as well as the triplet lifetimes of each DPH derivative. The results indicate that the TTA process governs the value of ηUC.

6.
Angew Chem Int Ed Engl ; 61(39): e202205287, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35900162

RESUMEN

We describe a new type of nitrogen-centered polycyclic scaffold comprising a unique combination of 5-, 6-, and 7-membered rings. The compound is accessible through an intramolecular oxidative cyclodehydrogenation of tri(1-naphthyl)amine. To the best of our knowledge this is the very first example of a direct 3-fold cyclization of a triarylamine under oxidative conditions. The unusual ring fusion motif is confirmed by X-ray crystallography and the impact of cyclization on the electronic and photophysical properties is investigated both experimentally and theoretically based on density-functional theory (DFT) calculations. The formation of the unexpected product is rationalized by detailed mechanistic studies on the DFT level. The results suggest the cyclization to occur under kinetic control via a dicationic mechanism.

7.
Phys Chem Chem Phys ; 23(34): 18268-18282, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612372

RESUMEN

This perspective article provides a comprehensive but organized tutorial introduction of the kinetics related to photon upconversion (UC) by triplet-triplet annihilation (TTA) (TTA-UC). The field of TTA-UC is multi-disciplinary and rapidly growing with the involvement of researchers from diverse backgrounds. TTA-UC consists of a series of tangled photophysical processes, so a solid understanding of the kinetic features and consequences is important to develop and evaluate materials for TTA-UC. This tutorial starts with an introduction of the standard model of TTA-UC along with the assumptions used in the model. The essential concept of the spin statistics for TTA and how this concept is related to the singlet branching ratio, which directly affects the efficiency of UC, are then explained through step-by-step analyses. Using these foundations, solutions for the steady-state behaviors are derived, featuring the universal curve that describes the excitation intensity dependence of the UC quantum yield for any sample type. Various useful functions for analyzing experimental data are also introduced and summarized. The transient behaviors of TTA-UC are then discussed along with their equations, and the usefulness for analyzing transient experimental data is explained using examples. In this article, self-consistent derivations and relevant references are provided for an easy understanding of the advanced discussion and analyses.

8.
J Am Chem Soc ; 142(23): 10261-10266, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32456417

RESUMEN

A highly efficient tetradentate PNNP-type Ir photocatalyst, Mes-IrPCY2, was developed for the reduction of carbon dioxide. The photocatalyst furnished formic acid (HCO2H) with 87% selectivity together with carbon monoxide to achieve a turnover number of 2560, which is the highest among CO2 reduction photocatalysts without an additional photosensitizer. Mes-IrPCY2 exhibited outstanding photocatalytic CO2 reduction activity in the presence of the sacrificial electron source 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) in CO2-saturated N,N-dimethylacetamide under irradiation with visible light. The quantum yield was determined to be 49% for the generation of HCO2H and CO. Electron paramagnetic resonance and UV-vis spectroscopy studies of Mes-IrPCY2 with a sacrificial electron donor revealed that the one-electron-reduced species is the key intermediate for the selective formation of HCO2H.

9.
Chemistry ; 26(15): 3404-3410, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853985

RESUMEN

Two-photon absorption (TPA) dyes with intense fluorescence can be used to detect small chemical species and as sensors and bioimaging probes for specific analytes. Various TPA dyes responding to a number of external stimuli have been reported. Among them, biologically important anionic species have not been used as agents to control TPA properties because their direct electronic influences on the transition dipole moments of dyes are typically small. In this study, dipyrrolyldiketone BF2 complexes substituted with π-extended units exhibited efficient TPA properties that could be regulated by conformation changes induced by anion binding. The TPA intensity decreased to 1/5 of the original intensity upon anion binding, which was much larger than that observed for one-photon absorption. Anion detection was achieved by a change in the emission intensity of spatially resolved spots of two-photon-excited fluorescence (TPEF) in the sample. Experimental and theoretical studies were performed to understand the mechanism of the TPA property control and showed that the drastic changes in the transition dipole moments upon conformation changes between the straight and bending forms of the π-electronic systems caused the TPA and TPEF intensities drop.

10.
Phys Chem Chem Phys ; 22(32): 17807-17813, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32618981

RESUMEN

We report the triplet-triplet annihilation (TTA) upconversion (UC) through triplet energy transfer (TET) from a sensitiser fixed on a solid surface to free emitters dissolved in solution. A carboxylic-acid derivative of Pt-porphyrin was used as the sensitiser fixed on an amino-treated surface of continuous nanoporous glass without aggregation. UC emission was observed under photoexcitation of 532 nm for porphyrin-fixed glass immersed in an emitter solution of 9,10-diphenylanthracene (DPA), showing that TET occurs through the solid-liquid interface. The dynamics of TET was analysed through both phosphorescence decay of the sensitiser and UC emission rise from the emitter. Two TET components with different rate constants were found, slower than diffusion-controlled reactions in solution by 1-2 orders of magnitude. Nevertheless, the solid surface TET rates were fast enough to obtain a high quantum yield over the solid-liquid interface. By melting DPA and soaking it into sensitiser-fixed porous glass, we fabricated an all-solid system enabling TTA-UC through the bulk interface.

11.
Chemistry ; 25(25): 6425-6438, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30848510

RESUMEN

Linear ladder-type π-conjugated molecules have attracted much interest because of their intriguing physicochemical properties. To modulate their electronic structures, an effective strategy is to incorporate main-group elements into ladder-type π-conjugated molecules. In line with this strategy, a variety of ladder-type π-conjugated molecules with main-group elements have been synthesized to explore their potential utility as organic functional materials. In this context, phosphole-based π-conjugated molecules are highly attractive, owing to their unique optical and electrochemical properties, which arise from the phosphorus atom. Herein, the synthesis and physicochemical properties of doubly thiophene-fused benzodiphospholes, as a new class of phosphole-based ladder-type π-conjugated molecule, are reported. Systematic investigations into the physicochemical properties of doubly thiophene-fused benzodiphospholes revealed their pluripotent features: intense near-infrared fluorescence, excellent two-photon absorption property, and remarkably high electron-transporting ability. This study demonstrates the potential utility of doubly thiophene-fused benzodiphospholes as organic functional materials for biological imaging, nonlinear optics, organic transistors, and organic photovoltaics.

12.
Photochem Photobiol Sci ; 17(5): 622-627, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29697105

RESUMEN

The room-temperature phosphorescence chromophore, Pt(ii) coproporphyrin I (PtCP), was fixed on the surface of a 3D-network of nanoscale pores of porous glass through ion-exchange reaction. The absorption and phosphorescence spectra indicated that PtCP can be loaded while maintaining monomeric dispersion at concentrations well beyond solubility limits of PtCP in solution. The phosphorescence quantum yield of PtCP fixed on the surface was also found to have double the enhancement of solution. The extended lifetime of phosphorescence of PtCP bonded on the surface compared to that in solution clearly indicated that suppression of nonradiative deactivation plays a key role in high quantum yield and long triplet lifetime. This hybridization with nano-porous glass provides opportunities for various potential applications.

13.
J Am Chem Soc ; 139(40): 14017-14020, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28915047

RESUMEN

In this proof of concept study, we show that intramolecular singlet fission (iSF) can be initiated from a singlet excited state accessed by two-photon absorption, rather than through a traditional route of direct one-photon excitation (OPE). Thus, iSF in pentacene dimers 2 and 3 is enabled through NIR irradiation at 775 nm, a wavelength where neither dimer exhibits linear absorption of light. The adamantyl and meta-phenylene spacers 2 and 3, respectively, are designed to feature superimposable geometries, which establishes that the electronic coupling between the two pentacenes is the significant structural feature that dictates iSF efficiency.

14.
Chemphyschem ; 18(1): 142-148, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27862812

RESUMEN

Heteroatomic derivatives of Chichibabin's hydrocarbon are explored theoretically to highlight the relationship between the electronic structure and nonlinear optical (NLO) properties. The results show that the systems are divided into two classes: one that has intermediate electronic structure between two main contributing resonance structures, and a second with an electronic structure that is approximated by only one resonance structure. It is found that the former class of derivatives exhibits approximately one-order larger static second hyperpolarizability (γ) than the latter class, because of either their intermediate diradical or charge-transfer (CT) characteristics. The asymmetric systems are further scrutinized by using the static electric field model, which shows that the intermediate CT character is essential for the very large enhancement of γ in the asymmetric systems. These results not only clarify the structure-property relationships of open-shell singlet NLO compounds with redox switching properties, but also shed light on a new and unexplored class of closed-shell NLO systems generated by the introduction of intermediate CT nature into open-shell singlet systems.

15.
J Org Chem ; 82(14): 7254-7264, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28656753

RESUMEN

A synthetic entry to novel dyes based on the dipyrrolonaphthyridinedione core was developed via the Heck reaction. These weakly fluorescent compounds bearing double bond linkages between the core and the peripheral units absorbed strongly in the far-red/NIR region and possessed large values of two-photon absorption (TPA) cross-sections (up to 5180 GM). Additionally, analogous dyes bearing triple bond linkages were also efficient TPA materials with relatively large two-photon absorption cross-sections (up to 2840 GM) as well as two-photon brightness (up to 1450 GM). The centrosymmetric nature of both of these families of dyes is responsible for the location of the maxima of two-photon absorption being at much higher energy than the ones corresponding to the double wavelength of the lowest-energy one-photon absorption. Theoretical calculations clarified that the enhancement of the TPA by the peripheral substitutions arose through different mechanisms depending on either the electron-donating or electron-withdrawing ability of a given substituent to the ambipolar core. The change in the electron distribution of HOMO and HOMO-1 by the push-pull effect was found to govern the strength of the lowest-energy TPA-allowed transition. Importantly, compounds from both series possessed a beneficial ratio of σ2/MW (1.6-9.8 GM/g).

16.
Chemistry ; 22(15): 5219-32, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26919627

RESUMEN

The synthesis of boron difluoride complexes of a series of curcuminoid derivatives containing various donor end groups is described. Time-dependent (TD)-DFT calculations confirm the charge-transfer character of the second lowest-energy transition band and ascribe the lowest energy band to a "cyanine-like" transition. Photophysical studies reveal that tuning the donor strength of the end groups allows covering a broad spectral range, from the visible to the NIR region, of the UV-visible absorption and fluorescence spectra. Two-photon-excited fluorescence and Z-scan techniques prove that an increase in the donor strength or in the rigidity of the backbone results in a considerable increase in the two-photon cross section, reaching 5000 GM, with predominant two-photon absorption from the S0-S2 charge-transfer transition. Direct comparisons with the hemicurcuminoid derivatives show that the two-photon active band for the curcuminoid derivatives has the same intramolecular charge-transfer character and therefore arises from a dipolar structure. Overall, this structure-relationship study allows the optimization of the two-photon brightness (i.e., 400-900 GM) with one dye that emits in the NIR region of the spectrum. In addition, these dyes demonstrate high intracellular uptake efficiency in Cos7 cells with emission in the visible region, which is further improved by using porous silica nanoparticles as dye vehicles for the imaging of two mammalian carcinoma cells type based on NIR fluorescence emission.


Asunto(s)
Compuestos de Boro/síntesis química , Curcumina/química , Curcumina/síntesis química , Colorantes Fluorescentes/química , Ionóforos/química , Animales , Compuestos de Boro/química , Fluorescencia , Estructura Molecular , Procesos Fotoquímicos , Fotones , Teoría Cuántica , Espectrometría de Fluorescencia
17.
Chemphyschem ; 17(14): 2128-36, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-26990918

RESUMEN

Three boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one- and two-photon-induced solid-state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J-aggregate crystal packing.

18.
Chemistry ; 20(35): 11129-36, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25056603

RESUMEN

The impact of intermolecular interactions on the third-order nonlinear optical (NLO) properties of open-shell molecular aggregates has been elucidated by considering one-dimensional aggregates of π-π stacked phenalenyl radicals with different intermolecular distances and the long-range corrected spin-unrestricted density functional theory method. In the phenalenyl dimer, which can be considered as a diradicaloid system, the diradical character strongly depends on the intermolecular distance, and the larger the intermolecular distance is, the larger the diradical character becomes. Then, around the equilibrium stacking distance that corresponds to an intermediate diradical character, its second hyperpolarizability (γ) is maximized and its value per monomer exhibits about a 30-fold enhancement with respect to the isolated phenalenyl monomer. This suggests that equilibrium is an optimal compromise between localization and delocalization of the radical electron pairs in such pancake bonding. No such effect was observed for the closed-shell coronene dimer. Moreover, when going from the dimer (diradical) to the tetramer (tetraradical), the γ-enhancement ratio increases nonlinearly with the aggregate size, whereas switching from the singlet to the highest spin (quintet) state causes a significant reduction of γ. Finally, for the tetramer, another one-order enhancement of γ is achieved for the dicationic singlet relative to its singlet neutral state. These results demonstrate the key role of intermolecular π-π stacking interactions and charge in open-shell (supra)molecular systems to achieve enhanced third-order NLO properties.


Asunto(s)
Modelos Moleculares , Fenalenos/química , Teoría Cuántica , Dimerización , Radicales Libres , Óptica y Fotónica
19.
Org Lett ; 26(9): 1931-1935, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38415634

RESUMEN

In phosphorus tetraazaporphyrins (PTAPs), the Q- and charge-transfer (CT) bands appear as a result of configuration interaction between their excited states. On the basis of this concept, a PTAP with an intense, broad CT band in the near-IR region has been rationally designed and realized by introducing eight diphenylaminophenyl (dPAP) groups. The order of the CT and Q-bands in ascending energy was supported by magnetic circular dichroism (MCD) spectroscopy and theoretical calculations. An intense two-photon absorption was also found in the deep near-IR region.

20.
J Am Chem Soc ; 135(4): 1430-7, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23293966

RESUMEN

The characteristics of the edge state, which is a peculiar magnetic state in zigzag-edged graphene nanoribbons (ZGNRs) that originates from electron-electron correlation in an edge-localized π-state, are investigated by preparing and characterizing quarteranthene molecules. The molecular geometry that was determined from the X-ray analysis is consistent with a zigzag-edge-localized structure of unpaired electrons. The localized electrons are responsible for the peculiar magnetic (room-temperature ferromagnetic correlation), optical (the lowest-lying doubly excited state), and chemical (peroxide bond formation) behaviors. On the basis of these distinguishing properties and a careful consideration of the valence bonding, insight into the edge state of ZGNRs can be gained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA