Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 133: 3-9, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35227625

RESUMEN

Axon growth and guidance in the developing nervous system rely on intracellular membrane dynamics that involve endosome maturation and transport, as well as its regulated tethering to the endoplasmic reticulum (ER). Recent studies have identified several key molecules, such as protrudin, which plays a dynamic role at membrane contact sites between the ER and endosomes/lysosomes, and myosin Va, which acts as a sensor for ER-derived Ca2+ that triggers peri-ER membrane export. These molecules form different types of multiprotein complexes at the interface of organelles and, in response to their surrounding microenvironments, such as Ca2+ concentrations and lipid contents, regulate the directional movement of endosomal vesicles in extending axons. Here, we review the molecular mechanisms underlying membrane dynamics and inter-organelle interactions during neuronal morphogenesis.


Asunto(s)
Retículo Endoplásmico , Endosomas , Lisosomas , Membranas Mitocondriales , Axones
2.
Proc Natl Acad Sci U S A ; 119(51): e2214957119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508673

RESUMEN

Secretory proteins and lipids are biosynthesized in the endoplasmic reticulum (ER). The "protein quality control" system (PQC) monitors glycoprotein folding and supports the elimination of terminally misfolded polypeptides. A key component of the PQC system is Uridine diphosphate glucose:glycoprotein glucosyltransferase 1 (UGGT1). UGGT1 re-glucosylates unfolded glycoproteins, to enable the re-entry in the protein-folding cycle and impede the aggregation of misfolded glycoproteins. In contrast, a complementary "lipid quality control" (LQC) system that maintains lipid homeostasis remains elusive. Here, we demonstrate that cytotoxic phosphatidic acid derivatives with saturated fatty acyl chains are one of the physiological substrates of UGGT2, an isoform of UGGT1. UGGT2 produces lipid raft-resident phosphatidylglucoside regulating autophagy. Under the disruption of lipid metabolism and hypoxic conditions, UGGT2 inhibits PERK-ATF4-CHOP-mediated apoptosis in mouse embryonic fibroblasts. Moreover, the susceptibility of UGGT2 KO mice to high-fat diet-induced obesity is elevated. We propose that UGGT2 is an ER-localized LQC component that mitigates saturated lipid-associated ER stress via lipid glucosylation.


Asunto(s)
Fibroblastos , Glucosiltransferasas , Animales , Ratones , Fibroblastos/metabolismo , Glucosiltransferasas/metabolismo , Estrés del Retículo Endoplásmico , Glicoproteínas/metabolismo , Lípidos
3.
Brain Behav Immun ; 110: 276-287, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36898418

RESUMEN

Pain transmission and processing in the nervous system are modulated by various biologically active substances, including lysophospholipids, through direct and indirect actions on the somatosensory pathway. Lysophosphatidylglucoside (LysoPtdGlc) was recently identified as a structurally unique lysophospholipid that exerts biological actions via the G protein-coupled receptor GPR55. Here, we demonstrated that GPR55-knockout (KO) mice show impaired induction of mechanical pain hypersensitivity in a model of spinal cord compression (SCC) without the same change in the models of peripheral tissue inflammation and peripheral nerve injury. Among these models, only SCC recruited peripheral inflammatory cells (neutrophils, monocytes/macrophages, and CD3+ T-cells) in the spinal dorsal horn (SDH), and GPR55-KO blunted these recruitments. Neutrophils were the first cells recruited to the SDH, and their depletion suppressed the induction of SCC-induced mechanical hypersensitivity and inflammatory responses in compressed SDH. Furthermore, we found that PtdGlc was present in the SDH and that intrathecal administration of an inhibitor of secretory phospholipase A2 (an enzyme required for producing LysoPtdGlc from PtdGlc) reduced neutrophil recruitment to compressed SDH and suppressed pain induction. Finally, by screening compounds from a chemical library, we identified auranofin as a clinically used drug with an inhibitory effect on mouse and human GPR55. Systemically administered auranofin to mice with SCC effectively suppressed spinal neutrophil infiltration and pain hypersensitivity. These results suggest that GPR55 signaling contributes to the induction of inflammatory responses and chronic pain after SCC via the recruitment of neutrophils and may provide a new target for reducing pain induction after spinal cord compression, such as spinal canal stenosis.


Asunto(s)
Dolor Crónico , Compresión de la Médula Espinal , Humanos , Ratones , Animales , Infiltración Neutrófila , Compresión de la Médula Espinal/metabolismo , Auranofina/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Dolor Crónico/metabolismo , Médula Espinal/metabolismo , Receptores de Cannabinoides/metabolismo
4.
Org Biomol Chem ; 21(10): 2138-2142, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794702

RESUMEN

The glycosylation of unprotected carbohydrates has emerged as an area of significant interest because it obviates the need for long reaction sequences involving protecting-group manipulations. Herein, we report the one-pot synthesis of anomeric glycosyl phosphates through the condensation of unprotected carbohydrates with phospholipid derivatives while retaining high stereo- and regioselective control. The anomeric center was activated using 2-chloro-1,3-dimethylimidazolinium chloride to facilitate condensation with glycerol-3-phosphate derivatives in an aqueous solution. A water/propionitrile mixture provided superior stereoselectivity while maintaining good yields. Under these optimized conditions, the condensation of stable isotope-labeled glucose with phosphatidic acid provided efficient access to labeled glycophospholipids as an internal standard for mass spectrometry.

5.
J Biol Chem ; 295(16): 5257-5277, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32144204

RESUMEN

ß-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form ß-cholesterylglucoside (ß-GlcChol) in vitro ß-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate ß-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (ß-GalChol), in addition to ß-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for ß-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for ß-GalChol formation. Liquid chromatography-tandem MS revealed that ß-GlcChol and ß-GalChol are present throughout development from embryo to adult in the mouse brain. We found that ß-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of ß-GalChol biosynthesis appeared to be during myelination. We also found that ß-GlcChol and ß-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form ß-GalChol. This is the first report of the existence of ß-GalChol in vertebrates and how ß-GlcChol and ß-GalChol are formed in the brain.


Asunto(s)
Encéfalo/metabolismo , Colesterol/análogos & derivados , Glucosilceramidasa/metabolismo , Animales , Encéfalo/citología , Línea Celular Tumoral , Células Cultivadas , Colesterol/metabolismo , Femenino , Galactosa/metabolismo , Galactosilceramidas/metabolismo , Glucosilceramidasa/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Oryzias , Ratas , Ratas Wistar
6.
Biochem Biophys Res Commun ; 536: 73-79, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360824

RESUMEN

Cerebrospinal fluid (CSF) contains glycosphingolipids, including lactosylceramide (LacCer, Galß(1,4)Glcß-ceramide). LacCer and its structural isomer, galabiosylceramide (Gb2, Galα(1,4)Galß-ceramide), are classified as ceramide dihexosides (CDH). Gb2 is degraded by α-galactosidase A (GLA) in lysosomes, and genetic GLA deficiency causes Fabry disease, an X-linked lysosomal storage disorder. In patients with Fabry disease, Gb2 accumulates in organs throughout the body. While Gb2 has been reported to be in the liver, kidney, and urine of healthy individuals, its presence in CSF has not been reported, either in patients with Fabry disease or healthy controls. Here, we isolated CDH fractions from CSF of patients with idiopathic normal pressure hydrocephalus. Purified CDH fractions showed positive reaction with Shiga toxin, which specifically binds to the Galα(1,4)Galß structure. The isolated CDH fractions were analyzed by hydrophilic interaction chromatography (HILIC)-electrospray ionization tandem mass spectrometry (ESI-MS/MS). HILIC-ESI-MS/MS separated LacCer and Gb2 and revealed the presence of Gb2 and LacCer in the fractions. We also found Gb2 in CSF from neurologically normal control subjects. This is the first report to show Gb2 exists in human CSF.


Asunto(s)
Gangliósidos/líquido cefalorraquídeo , Vías Biosintéticas , Galactosiltransferasas/metabolismo , Gangliósidos/biosíntesis , Gangliósidos/química , Glicoesfingolípidos/aislamiento & purificación , Glicosiltransferasas/metabolismo , Células HeLa , Humanos , Hidrocefalia/líquido cefalorraquídeo
7.
Cell Tissue Res ; 380(3): 527-537, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31975032

RESUMEN

Cell migration is essential for many physiological and pathological processes, including embryonic development, wound healing, immune response and cancer metastasis. Inka2 transcripts are observed in migrating cells during embryonic development, suggesting the involvement of inka2 in cell migration. However, its precise role remains unclear. Here, we found that inka2 controlled focal adhesion dynamics and cell migration, likely by regulating protein phosphatase-2A (PP2A) function. A scratch assay revealed that inka2 shRNA-transfected NIH3T3 cells showed rapid wound closure, indicating an inhibitory effect by inka2 on cell migration. Live-cell imaging of NIH3T3 cells expressing EGFP-paxillin using total internal reflection fluorescence microscopy revealed that inka2 knockdown increased the turnover rate of focal adhesions. Given that PP2A, which consists of catalytic (C), regulatory (B) and scaffolding (A) subunits, is known to regulate focal adhesions, we examined the inka2-PP2A interaction. Immunoprecipitation revealed an association between inka2 and the PP2A C subunit. Binding of Inka2 to the C subunit prevented the association between the A and C subunits, suggesting that inka2 can inhibit PP2A function. Furthermore, both inka2 expression and PP2A inhibition decreased focal adhesion kinase-paxillin interaction, resulting in reduced formation of focal adhesions. We assessed the effect of pharmacological PP2A inhibition on the inka2 knockdown-induced increase in cell migration speed and found that treatment with a PP2A inhibitor negated the accelerated migration of inka2 knockdown cells. These results suggest that inka2 knockdown exerts its effects through PP2A-dependent regulation of focal adhesions. Our findings contribute to a better understanding of the molecular mechanisms underlying cell migration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Adhesiones Focales , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Células 3T3 NIH
8.
Org Biomol Chem ; 18(41): 8467-8473, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33063071

RESUMEN

Rhodopsin-like G protein-coupled receptor (GPCR) GPR55 is attracting attention as a pharmaceutical target, because of its relationship with various physiological and pathological events. Although GPR55 was initially deorphanized as a cannabinoid receptor, lysophosphatidylinositol (LPI) is now widely perceived to be an endogenous ligand of GPR55. Recently, lysophosphatidyl-ß-d-glucoside (LPGlc) has been found to act on GPR55 to repel dorsal root ganglion (DRG) neurons. In this study, we designed and synthesized various LPGlc analogues having the squaryldiamide group as potential agonists of GPR55. By the axon turning assay, several analogues exhibited similar activities to that of LPGlc. These results will provide valuable information for understanding the mode of action of LPGlc and its analogues and for the discovery of potent and selective antagonists or agonists of GPR55.


Asunto(s)
Receptores de Cannabinoides
9.
Dev Growth Differ ; 61(4): 276-282, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30968390

RESUMEN

Skin development is tightly temporally coordinated with its sensory innervation, which consists of the peripheral branches of the dorsal root ganglion (DRG) axons. Various studies suggest that the skin produces a long-range attractant for the sensory axons. However, the exact identity of the guidance cue(s) remains unclear. To reveal the detailed molecular mechanism that controls DRG axon guidance and targeting, manipulation of specific skin layers at specific time points are required. To test a variety of attractants that can be expressed in specific skin layers at specific timepoints, we combined in utero electroporation with the Tol2 transposon system to induce long-term transgene expression in the developing mouse skin, including in the highly proliferative epidermal stem cells (basal layer) and their descendants (spinous and granular layer cells). The plasmid solution was injected as close to the hindpaw plantar surface as possible. Immediately, electric pulses were passed through the embryo to transduce the plasmid DNA into hindpaw skin cells. Balancing outcome measurements including: embryo survival, transfection efficiency, and the efficiency of transgene integration into host cells, we found that IUE was best performed on E13.5, and using an electroporation voltage of 34V. After immunostaining embryonic and early postnatal skin tissue sections for keratinocyte and sensory axon markers, we observe the growth of axons into skin epidermal layers including areas expressing EGFP. Therefore, this method is useful for studying the interaction between axon growth and epidermal cell division/differentiation.


Asunto(s)
Epidermis/inervación , Epidermis/metabolismo , Neuronas/metabolismo , Piel/inervación , Piel/metabolismo , Transgenes/genética , Animales , Axones/metabolismo , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Epidermis/embriología , Epidermis/crecimiento & desarrollo , Femenino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Embarazo , Piel/embriología , Piel/crecimiento & desarrollo
10.
J Neurosci ; 36(20): 5636-49, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194341

RESUMEN

UNLABELLED: Graded distribution of intracellular second messengers, such as Ca(2+) and cyclic nucleotides, mediates directional cell migration, including axon navigational responses to extracellular guidance cues, in the developing nervous system. Elevated concentrations of cAMP or cGMP on one side of the neuronal growth cone induce its attractive or repulsive turning, respectively. Although effector processes downstream of Ca(2+) have been extensively studied, very little is known about the mechanisms that enable cyclic nucleotides to steer migrating cells. Here, we show that asymmetric cyclic nucleotide signaling across the growth cone mediates axon guidance via modulating microtubule dynamics and membrane organelle transport. In embryonic chick dorsal root ganglion neurons in culture, contact of an extending microtubule with the growth cone leading edge induces localized membrane protrusion at the site of microtubule contact. Such a contact-induced protrusion requires exocytosis of vesicle-associated membrane protein 7 (VAMP7)-positive vesicles that have been transported centrifugally along the microtubule. We found that the two cyclic nucleotides counteractively regulate the frequency of microtubule contacts and targeted delivery of VAMP7 vesicles: cAMP stimulates and cGMP inhibits these events, thereby steering the growth cone in the opposite directions. By contrast, Ca(2+) signals elicit no detectable change in either microtubule contacts or VAMP7 vesicle delivery during Ca(2+)-induced growth cone turning. Our findings clearly demonstrate growth cone steering machinery downstream of cyclic nucleotide signaling and highlight a crucial role of dynamic microtubules in leading-edge protrusion for cell chemotaxis. SIGNIFICANCE STATEMENT: Developing neurons can extend long axons toward their postsynaptic targets. The tip of each axon, called the growth cone, recognizes extracellular guidance cues and navigates the axon along the correct path. Here we show that asymmetric cyclic nucleotide signaling across the growth cone mediates axon guidance through localized regulation of microtubule dynamics and resulting recruitment of specific populations of membrane vesicles to the growth cone's leading edge. Remarkably, cAMP stimulates microtubule growth and membrane protrusion, whereas cGMP promotes microtubule retraction and membrane senescence, explaining the opposite directional polarities of growth cone turning induced by these cyclic nucleotides. This study reveals a novel microtubule-based mechanism through which cyclic nucleotides polarize the growth cone steering machinery for bidirectional axon guidance.


Asunto(s)
Orientación del Axón , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Transporte Axonal , Calcio/metabolismo , Línea Celular , Células Cultivadas , Embrión de Pollo , Ganglios Espinales/citología , Neuronas/citología , Proteínas R-SNARE/metabolismo , Transducción de Señal
12.
Nat Rev Neurosci ; 12(4): 191-203, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21386859

RESUMEN

Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.


Asunto(s)
Axones/metabolismo , Fenómenos Fisiológicos Celulares , Conos de Crecimiento/fisiología , Sistemas de Mensajero Secundario/fisiología , Animales , Calcio/metabolismo , Modelos Biológicos , Transporte de Proteínas/fisiología
13.
J Neurosci ; 34(21): 7165-78, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849351

RESUMEN

Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.


Asunto(s)
Endocitosis/fisiología , Exocitosis/fisiología , Conos de Crecimiento/fisiología , Neuronas/citología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Células Cultivadas , Embrión de Pollo , Clatrina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Ganglios Espinales/citología , Conos de Crecimiento/efectos de los fármacos , Glicoproteína Asociada a Mielina/farmacología , Neuronas/efectos de los fármacos , Organofosfonatos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fotólisis , Piperazinas/farmacología , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
14.
Dev Growth Differ ; 57(4): 291-304, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25966925

RESUMEN

In the complex neuronal circuits in the nervous systems, billions of neurons are precisely interconnected by long, thin processes called the axons. The growth cone, a highly motile structure at the tip of an extending axon, navigates by responding to a variety of extracellular molecular cues toward their distant target cells and make synaptic connections. Emerging evidence indicates that exocytic and endocytic membrane trafficking systems play multiple important roles in the regulation of such axonal morphogenetic processes. Exocytosis and endocytosis organize the subcellular distribution of membrane-associated molecules, such as receptors, cell adhesion molecules, and cytoskeletal regulators, to control intracellular signaling and driving machineries. Furthermore, the exocytosis of trophic factors and extracellular proteinases act on surrounding microenvironments to affect growth cone motility. In this Review Article, we summarize our current understanding of the regulation and function of exocytic and endocytic membrane trafficking in axon morphogenesis during development, and discuss potential mechanisms of how the membrane trafficking systems exert such morphological changes.


Asunto(s)
Axones , Endocitosis , Exocitosis , Animales , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Modelos Biológicos
15.
J Cell Sci ; 125(Pt 4): 817-30, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22421360

RESUMEN

Syntaxin 1C (STX1C), produced by alternative splicing of the stx1A gene, is a soluble syntaxin lacking a SNARE domain and a transmembrane domain. It is unclear how soluble syntaxin can control intracellular membrane trafficking. We found that STX1C affected microtubule (MT) dynamics through its tubulin-binding domain (TBD) and regulated recycling of intracellular vesicles carrying glucose transporter-1 (GLUT1). We demonstrated that the amino acid sequence VRSK of the TBD was important for the interaction between STX1C and tubulin and that wild-type STX1C (STX1C-WT), but not the TBD mutant, reduced the V(max) of glucose transport and GLUT1 translocation to the plasma membrane in FRSK cells. Moreover, by time-lapse analysis, we revealed that STX1C-WT suppressed MT stability and vesicle-transport motility in cells expressing GFP-α-tubulin, whereas TBD mutants had no effect. We also identified that GLUT1 was recycled in the 45 minutes after endocytosis and that GLUT1 vesicles moved along with MTs. Finally, we showed, by a recycling assay and FCM analysis, that STX1C-WT delayed the recycling phase of GLUT1 to PM, without affecting the endocytotic process of GLUT1. These data indicate that STX1C delays the GLUT1 recycling phase by suppressing MT stability and vesicle-transport motility through its TBD, providing the first insight into how soluble syntaxin controls membrane trafficking.


Asunto(s)
Membrana Celular/metabolismo , Microtúbulos/metabolismo , Sintaxina 1/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Línea Celular , Vesículas Citoplasmáticas/metabolismo , Endocitosis , Transportador de Glucosa de Tipo 1/metabolismo , Microtúbulos/química , Estabilidad Proteica , Ratas , Solubilidad , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
16.
J Neurosci ; 32(19): 6587-99, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573681

RESUMEN

Axonal outgrowth is a coordinated process of cytoskeletal dynamics and membrane trafficking; however, little is known about proteins responsible for regulating the membrane supply. LMTK1 (lemur kinase 1)/AATYK1 (apoptosis-associated tyrosine kinase 1) is a serine/threonine kinase that is highly expressed in neurons. We recently reported that LMTK1 plays a role in recycling endosomal trafficking in CHO-K1 cells. Here we explore the role of LMTK1 in axonal outgrowth and its regulation by Cdk5 using mouse brain cortical neurons. LMTK1 was expressed and was phosphorylated at Ser34, the Cdk5 phosphorylation site, at the time of axonal outgrowth in culture and colocalized with Rab11A, the small GTPase that regulates recycling endosome traffic, at the perinuclear region and in the axon. Overexpression of the unphosphorylated mutant LMTK1-S34A dramatically promoted axonal outgrowth in cultured neurons. Enhanced axonal outgrowth was diminished by the inactivation of Rab11A, placing LMTK1 upstream of Rab11A. Unexpectedly, the downregulation of LMTK1 by knockdown or gene targeting also significantly enhanced axonal elongation. Rab11A-positive vesicles were transported anterogradely more quickly in the axons of LMTK1-deficient neurons than in those of wild-type neurons. The enhanced axonal outgrowth was reversed by LMTK1-WT or the LMTK1-S34D mutant, which mimics the phosphorylated state, but not by LMTK1-S34A. Thus, LMTK1 can negatively control axonal outgrowth by regulating Rab11A activity in a Cdk5-dependent manner, and Cdk5-LMTK1-Rab11 is a novel signaling pathway involved in axonal outgrowth.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Axones/fisiología , Quinasa 5 Dependiente de la Ciclina/fisiología , Conos de Crecimiento/fisiología , Proteínas Tirosina Quinasas/fisiología , Proteínas de Unión al GTP rab/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Axones/enzimología , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Conos de Crecimiento/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Fosforilación/fisiología , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/genética , Proteínas de Unión al GTP rab/antagonistas & inhibidores
17.
Sci Transl Med ; 15(700): eabq7721, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37315111

RESUMEN

Intracranial aneurysms (IAs) are a high-risk factor for life-threatening subarachnoid hemorrhage. Their etiology, however, remains mostly unknown at present. We conducted screening for sporadic somatic mutations in 65 IA tissues (54 saccular and 11 fusiform aneurysms) and paired blood samples by whole-exome and targeted deep sequencing. We identified sporadic mutations in multiple signaling genes and examined their impact on downstream signaling pathways and gene expression in vitro and an arterial dilatation model in mice in vivo. We identified 16 genes that were mutated in at least one IA case and found that these mutations were highly prevalent (92%: 60 of 65 IAs) among all IA cases examined. In particular, mutations in six genes (PDGFRB, AHNAK, OBSCN, RBM10, CACNA1E, and OR5P3), many of which are linked to NF-κB signaling, were found in both fusiform and saccular IAs at a high prevalence (43% of all IA cases examined). We found that mutant PDGFRBs constitutively activated ERK and NF-κB signaling, enhanced cell motility, and induced inflammation-related gene expression in vitro. Spatial transcriptomics also detected similar changes in vessels from patients with IA. Furthermore, virus-mediated overexpression of a mutant PDGFRB induced a fusiform-like dilatation of the basilar artery in mice, which was blocked by systemic administration of the tyrosine kinase inhibitor sunitinib. Collectively, this study reveals a high prevalence of somatic mutations in NF-κB signaling pathway-related genes in both fusiform and saccular IAs and opens a new avenue of research for developing pharmacological interventions.


Asunto(s)
Aneurisma Intracraneal , FN-kappa B , Animales , Ratones , Aneurisma Intracraneal/genética , Mutación/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Humanos
18.
Mol Cell Neurosci ; 48(4): 332-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21459144

RESUMEN

Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Polaridad Celular/fisiología , Conos de Crecimiento/fisiología , Neuronas/citología , Animales , Movimiento Celular/fisiología , Modelos Neurológicos , Dinámicas no Lineales
19.
J Biol Chem ; 285(53): 41740-8, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21041312

RESUMEN

The activity of PI3K is necessary for polarized cell motility. To guide extending axons, environmental cues polarize the growth cone via asymmetric generation of Ca(2+) signals and subsequent intracellular mechanical events, including membrane trafficking and cytoskeletal reorganization. However, it remains unclear how PI3K is involved in such events for axon guidance. Here, we demonstrate that PI3K plays a permissive role in growth cone turning by facilitating microtubule (MT)-dependent membrane transport. Using embryonic chick dorsal root ganglion neurons in culture, attractive axon turning was induced by Ca(2+) elevations on one side of the growth cone by photolyzing caged Ca(2+) or caged inositol 1,4,5-trisphosphate. We show that PI3K activity was required downstream of Ca(2+) signals for growth cone turning. Attractive Ca(2+) signals, generated with caged Ca(2+) or caged inositol 1,4,5-trisphosphate, triggered asymmetric transport of membrane vesicles from the center to the periphery of growth cones in a MT-dependent manner. This centrifugal vesicle transport was abolished by PI3K inhibitors, suggesting that PI3K is involved in growth cone attraction at the level of membrane trafficking. Consistent with this observation, immunocytochemistry showed that PI3K inhibitors reduced MTs in the growth cone peripheral domain. Time-lapse imaging of EB1 on the plus-end of MTs revealed that MT advance into the growth cone peripheral domain was dependent on PI3K activity: inhibition of the PI3K signaling pathway attenuated MT advance, whereas exogenous phosphatidylinositol 3,4,5-trisphosphate, the product of PI3K-catalyzed reactions, promoted MT advance. This study demonstrates the importance of PI3K-dependent membrane trafficking in chemotactic cell migration.


Asunto(s)
Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Embrión de Pollo , Citoesqueleto/metabolismo , Ganglios Espinales/metabolismo , Inmunohistoquímica/métodos , Modelos Genéticos , Polímeros/química , Estructura Terciaria de Proteína , Transducción de Señal
20.
Nat Cell Biol ; 5(9): 819-26, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12942088

RESUMEN

Axon growth during neural development is highly dependent on both cytoskeletal re-organization and polarized membrane trafficking. Previously, we demonstrated that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate and axon growth in cultured hippocampal neurons, possibly by interacting with tubulin heterodimers and promoting microtubule assembly. Here, we identify Numb as a CRMP-2-interacting protein. Numb has been shown to interact with alpha-adaptin and to be involved in endocytosis. We found that Numb was associated with L1, a neuronal cell adhesion molecule that is endocytosed and recycled at the growth cone, where CRMP-2 and Numb were colocalized. Furthermore, expression of dominant-negative CRMP-2 mutants or knockdown of CRMP-2 message with small-interfering (si) RNA inhibited endocytosis of L1 at axonal growth cones and suppressed axon growth. These results suggest that in addition to regulating microtubule assembly, CRMP-2 is involved in polarized Numb-mediated endocytosis of proteins such as L1.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Endocitosis/fisiología , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología , Animales , Polaridad Celular/genética , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Feto , Conos de Crecimiento/ultraestructura , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Interferencia de ARN/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA