Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 43(14): 2954-2978, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822137

RESUMEN

The degradation of organelles by autophagy is essential for cellular homeostasis. The Golgi apparatus has recently been demonstrated to be degraded by autophagy, but little is known about how the Golgi is recognized by the forming autophagosome. Using quantitative proteomic analysis and two novel Golgiphagy reporter systems, we found that the five-pass transmembrane Golgi-resident proteins YIPF3 and YIPF4 constitute a Golgiphagy receptor. The interaction of this complex with LC3B, GABARAP, and GABARAPL1 is dependent on a LIR motif within YIPF3 and putative phosphorylation sites immediately upstream; the stability of the complex is governed by YIPF4. Expression of a YIPF3 protein containing a mutated LIR motif caused an elongated Golgi morphology, indicating the importance of Golgi turnover via selective autophagy. The reporter assays reported here may be readily adapted to different experimental contexts to help deepen our understanding of Golgiphagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Aparato de Golgi , Proteínas Asociadas a Microtúbulos , Aparato de Golgi/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteómica/métodos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética
2.
Nat Methods ; 21(5): 889-896, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580844

RESUMEN

The background light from out-of-focus planes hinders resolution enhancement in structured illumination microscopy when observing volumetric samples. Here we used selective plane illumination and reversibly photoswitchable fluorescent proteins to realize structured illumination within the focal plane and eliminate the out-of-focus background. Theoretical investigation of the imaging properties and experimental demonstrations show that selective plane activation is beneficial for imaging dense microstructures in cells and cell spheroids.


Asunto(s)
Microscopía Fluorescente , Microscopía Fluorescente/métodos , Humanos , Esferoides Celulares , Iluminación/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/química , Proteínas Fluorescentes Verdes/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(2): e2306454120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170752

RESUMEN

Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Hexoquinasa , Hexoquinasa/genética , Hexoquinasa/metabolismo , Estudios Prospectivos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Mitocondrias/metabolismo , Lisosomas/metabolismo , Proteínas Quinasas/metabolismo , Senescencia Celular/genética , Homeostasis , Autofagia/genética
4.
EMBO Rep ; 24(12): e57300, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987447

RESUMEN

Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.


Asunto(s)
Caenorhabditis elegans , Microautofagia , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Membranas Intracelulares/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Nucleic Acids Res ; 45(4): 2179-2187, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27986852

RESUMEN

In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucariotas/metabolismo , Modelos Moleculares , Conformación Molecular , Factores Procarióticos de Iniciación/química , Factores Procarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
6.
Nucleic Acids Res ; 45(11): 6945-6959, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28482099

RESUMEN

During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , GTP Fosfohidrolasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Activación Enzimática , Proteínas de Escherichia coli/fisiología , GTP Fosfohidrolasas/fisiología , Guanosina Trifosfato/química , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades Ribosómicas Pequeñas Bacterianas
7.
Proc Natl Acad Sci U S A ; 113(16): E2286-95, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27071098

RESUMEN

In prokaryotic systems, the initiation phase of protein synthesis is governed by the presence of initiation factors that guide the transition of the small ribosomal subunit (30S) from an unlocked preinitiation complex (30S preIC) to a locked initiation complex (30SIC) upon the formation of a correct codon-anticodon interaction in the peptidyl (P) site. Biochemical and structural characterization of GE81112, a translational inhibitor specific for the initiation phase, indicates that the main mechanism of action of this antibiotic is to prevent P-site decoding by stabilizing the anticodon stem loop of the initiator tRNA in a distorted conformation. This distortion stalls initiation in the unlocked 30S preIC state characterized by tighter IF3 binding and a reduced association rate for the 50S subunit. At the structural level we observe that in the presence of GE81112 the h44/h45/h24a interface, which is part of the IF3 binding site and forms ribosomal intersubunit bridges, preferentially adopts a disengaged conformation. Accordingly, the findings reveal that the dynamic equilibrium between the disengaged and engaged conformations of the h44/h45/h24a interface regulates the progression of protein synthesis, acting as a molecular switch that senses and couples the 30S P-site decoding step of translation initiation to the transition from an unlocked preIC to a locked 30SIC state.


Asunto(s)
Antibacterianos/química , Escherichia coli/química , Iniciación de la Cadena Peptídica Traduccional , ARN Bacteriano/química , ARN Ribosómico 16S/química , ARN de Transferencia/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Conformación de Ácido Nucleico
8.
Nucleic Acids Res ; 43(20): 10015-25, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26464437

RESUMEN

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.


Asunto(s)
Cinamatos/química , Cinamatos/farmacología , Higromicina B/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Sitios de Unión , Cinamatos/metabolismo , Cristalografía por Rayos X , Higromicina B/química , Higromicina B/metabolismo , Higromicina B/farmacología , Modelos Moleculares , Peptidil Transferasas/química , Peptidil Transferasas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
9.
Antimicrob Agents Chemother ; 59(5): 2849-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25753625

RESUMEN

Although both tetracycline and tigecycline inhibit protein synthesis by sterically hindering the binding of tRNA to the ribosomal A site, tigecycline shows increased efficacy in both in vitro and in vivo activity assays and escapes the most common resistance mechanisms associated with the tetracycline class of antibiotics. These differences in activities are attributed to the tert-butyl-glycylamido side chain found in tigecycline. Our structural analysis by X-ray crystallography shows that tigecycline binds the bacterial 30S ribosomal subunit with its tail in an extended conformation and makes extensive interactions with the 16S rRNA nucleotide C1054. These interactions restrict the mobility of C1054 and contribute to the antimicrobial activity of tigecycline, including its resistance to the ribosomal protection proteins.


Asunto(s)
Minociclina/análogos & derivados , Ribosomas/metabolismo , Cristalografía por Rayos X , Minociclina/metabolismo , Minociclina/farmacología , Unión Proteica , Estructura Secundaria de Proteína , ARN Ribosómico 16S/metabolismo , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/metabolismo , Tigeciclina
10.
Nat Commun ; 15(1): 7194, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169022

RESUMEN

Autophagy is a highly conserved process from yeast to mammals in which intracellular materials are engulfed by a double-membrane organelle called autophagosome and degrading materials by fusing with the lysosome. The process of autophagy is regulated by sequential recruitment and function of autophagy-related (Atg) proteins. Genetic hierarchical analyses show that the ULK1 complex comprised of ULK1-FIP200-ATG13-ATG101 translocating from the cytosol to autophagosome formation sites as a most upstream ATG factor; this translocation is critical in autophagy initiation. However, how this translocation occurs remains unclear. Here, we show that ULK1 is palmitoylated by palmitoyltransferase ZDHHC13 and translocated to the autophagosome formation site upon autophagy induction. We find that the ULK1 palmitoylation is required for autophagy initiation. Moreover, the ULK1 palmitoylated enhances the phosphorylation of ATG14L, which is required for activating PI3-Kinase and producing phosphatidylinositol 3-phosphate, one of the autophagosome membrane's lipids. Our results reveal how the most upstream ULK1 complex translocates to the autophagosome formation sites during autophagy.


Asunto(s)
Aciltransferasas , Autofagosomas , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Autofagia , Péptidos y Proteínas de Señalización Intracelular , Lipoilación , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/fisiología , Humanos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Aciltransferasas/metabolismo , Aciltransferasas/genética , Autofagosomas/metabolismo , Células HEK293 , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Transporte de Proteínas , Proteínas de Transporte Vesicular
11.
Nat Cell Biol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174742

RESUMEN

Cells release intraluminal vesicles in multivesicular bodies as exosomes to communicate with other cells. Although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. Here we employed comprehensive RNA interference screening for autophagy-related factors and discovered that Rubicon, a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for intraluminal vesicle formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways. Taken together, our current results suggest that the Rubicon-WIPI axis functions as a key regulator of exosome biogenesis and is responsible for age-dependent changes in exosome quantity and quality.

12.
Nat Struct Mol Biol ; 13(10): 871-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16998488

RESUMEN

Kasugamycin (Ksg) specifically inhibits translation initiation of canonical but not of leaderless messenger RNAs. Ksg inhibition is thought to occur by direct competition with initiator transfer RNA. The 3.35-A structure of Ksg bound to the 30S ribosomal subunit presented here provides a structural description of two Ksg-binding sites as well as a basis for understanding Ksg resistance. Notably, neither binding position overlaps with P-site tRNA; instead, Ksg mimics codon nucleotides at the P and E sites by binding within the path of the mRNA. Coupled with biochemical experiments, our results suggest that Ksg indirectly inhibits P-site tRNA binding through perturbation of the mRNA-tRNA codon-anticodon interaction during 30S canonical initiation. In contrast, for 70S-type initiation on leaderless mRNA, the overlap between mRNA and Ksg is reduced and the binding of tRNA is further stabilized by the presence of the 50S subunit, minimizing Ksg efficacy.


Asunto(s)
Aminoglicósidos/farmacología , Escherichia coli/química , Iniciación de la Cadena Peptídica Traduccional , ARN Bacteriano/química , ARN Mensajero/química , ARN de Transferencia/metabolismo , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Antibacterianos/química , Sitios de Unión , Codón , Modelos Moleculares , Nucleótidos/química , Estructura Terciaria de Proteína , ARN de Transferencia/química , Relación Estructura-Actividad
13.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088665

RESUMEN

While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.


Asunto(s)
Subunidades Ribosómicas Pequeñas Bacterianas , Ribosomas , Microscopía por Crioelectrón , ARN Ribosómico 16S/genética , Subunidades Ribosómicas Pequeñas
14.
Structure ; 15(3): 289-97, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17355865

RESUMEN

In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.


Asunto(s)
ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
15.
J Biochem ; 144(5): 665-73, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18784190

RESUMEN

The stalk protein L12 is the only multiple component in 50S ribosomal subunit. In Escherichia coli, two L12 dimers bind to the C-terminal domain of L10 to form a pentameric complex, L10[(L12)(2)](2), while the recent X-ray crystallographic study and tandem MS analyses revealed the presence of a heptameric complex, L10[(L12)(2)](3), in some thermophilic bacteria. We here characterized the complex of Thermus thermophilus (Tt-) L10 and Tt-L12 stalk proteins by biochemical approaches using C-terminally truncated variants of Tt-L10. The C-terminal 44-residues removal (Delta44) resulted in complete loss of interactions with Tt-L12. Quantitative analysis of Tt-L12 assembled onto E. coli 50S core particles, together with Tt-L10 variants, indicated that the wild-type, Delta13 and Delta23 variants bound three, two and one Tt-L12 dimers, respectively. The hybrid ribosomes that contained the T. thermophilus proteins were highly accessible to E. coli elongation factors. The progressive removal of Tt-L12 dimers caused a stepwise reduction of ribosomal activities, which suggested that each individual stalk dimer contributed to ribosomal function. Interestingly, the hybrid ribosomes showed higher EF-G-dependent GTPase activity than E. coli ribosomes, even when two or one Tt-L12 dimer. This result seems to be due to a structural characteristic of Tt-L12 dimer.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Alineación de Secuencia
16.
Artículo en Inglés | MEDLINE | ID: mdl-18540050

RESUMEN

Selenophosphate synthetase (SPS) catalyzes the activation of selenide with ATP to synthesize selenophosphate, the reactive selenium donor for biosyntheses of both the 21st amino acid selenocysteine and 2-selenouridine nucleotides in tRNA anticodons. The crystal structure of an N-terminally (25 residues) truncated fragment of SPS (SPS-DeltaN) from Aquifex aeolicus has been determined at 2.0 A resolution. The structure revealed SPS to be a two-domain alpha/beta protein, with domain folds that are homologous to those of PurM-superfamily proteins. In the crystal, six monomers of SPS-DeltaN form a hexamer of 204 kDa, whereas the molecular weight estimated by ultracentrifugation was approximately 63 kDa, which is comparable to the calculated weight of the dimer (68 kDa).


Asunto(s)
Bacterias/enzimología , Fosfotransferasas/química , Secuencia de Aminoácidos , Bacterias/clasificación , Catálisis , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Fosfatos/síntesis química , Fosfotransferasas/aislamiento & purificación , Fosfotransferasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Compuestos de Selenio/síntesis química , Selenocisteína/química , Homología de Secuencia de Aminoácido , Ultracentrifugación
17.
Artículo en Inglés | MEDLINE | ID: mdl-18007048

RESUMEN

Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34-Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 A resolution and belongs to space group P3(1)21 or P3(2)21.


Asunto(s)
Proteínas Ribosómicas/química , Proteínas Supresoras de Tumor/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/metabolismo , Humanos , Proteína Ribosómica L10 , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Supresoras de Tumor/aislamiento & purificación
18.
J Mol Biol ; 377(2): 421-30, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18258260

RESUMEN

A phylogenetically conserved ribosomal protein L16p/L10e organizes the architecture of the aminoacyl tRNA binding site on the large ribosomal subunit. Eukaryotic L10 also exhibits a variety of cellular activities, and, in particular, human L10 is known as a putative tumor suppressor, QM. We have determined the 2.5-A crystal structure of the human L10 core domain that corresponds to residues 34-182 of the full-length 214 amino acids. Its two-layered alpha+beta architecture is significantly similar to those of the archaeal and bacterial homologues, substantiating a high degree of structural conservation across the three phylogenetic domains. A cation-binding pocket formed between alpha2 and beta 6 is similar to that of the archaeal L10 protein but appears to be better ordered. Previously reported L10 mutations that cause defects in the yeast ribosome are clustered around this pocket, indicating that its integrity is crucial for its role in L10 function. Characteristic interactions among Arg90-Trp171-Arg139 guide the C-terminal part outside of the central fold, implying that the eukaryote-specific C-terminal extension localizes on the outer side of the ribosome.


Asunto(s)
Células Eucariotas , Pliegue de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteína Ribosómica L10 , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/genética , Alineación de Secuencia , Homología Estructural de Proteína , Proteínas Supresoras de Tumor/clasificación , Proteínas Supresoras de Tumor/genética
19.
J Bacteriol ; 189(17): 6397-406, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17616598

RESUMEN

The RimM protein has been implicated in the maturation of the 30S ribosomal subunit. It binds to ribosomal protein S19, located in the head domain of the 30S subunit. Multiple sequence alignments predicted that RimM possesses two domains in its N- and C-terminal regions. In the present study, we have produced Thermus thermophilus RimM in both the full-length form (162 residues) and its N-terminal fragment, spanning residues 1 to 85, as soluble proteins in Escherichia coli and have performed structural analyses by nuclear magnetic resonance spectroscopy. Residues 1 to 80 of the RimM protein fold into a single structural domain adopting a six-stranded beta-barrel fold. On the other hand, the C-terminal region of RimM (residues 81 to 162) is partly folded in solution. Analyses of 1H-15N heteronuclear single quantum correlation spectra revealed that a wide range of residues in the C-terminal region, as well as the residues in the vicinity of a hydrophobic patch in the N-terminal domain, were dramatically affected upon complex formation with ribosomal protein S19.


Asunto(s)
Proteínas Ribosómicas/química , Thermus thermophilus/química , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia , Thermus thermophilus/genética
20.
Mol Cell ; 28(3): 434-45, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17996707

RESUMEN

Ribosome binding factor A (RbfA) is a bacterial cold shock response protein, required for an efficient processing of the 5' end of the 16S ribosomal RNA (rRNA) during assembly of the small (30S) ribosomal subunit. Here we present a crystal structure of Thermus thermophilus (Tth) RbfA and a three-dimensional cryo-electron microscopic (EM) map of the Tth 30S*RbfA complex. RbfA binds to the 30S subunit in a position overlapping the binding sites of the A and P site tRNAs, and RbfA's functionally important C terminus extends toward the 5' end of the 16S rRNA. In the presence of RbfA, a portion of the 16S rRNA encompassing helix 44, which is known to be directly involved in mRNA decoding and tRNA binding, is displaced. These results shed light on the role played by RbfA during maturation of the 30S subunit, and also indicate how RbfA provides cells with a translational advantage under conditions of cold shock.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Thermus thermophilus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Terciaria de Proteína , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA