Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 146(8): 5100-5107, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38112440

RESUMEN

Diamonds have been shown to be an excellent platform for quantum computing and quantum sensing applications. These applications are enabled by the presence of defects in the lattice, which are also known as color centers. The most common nitrogen-based defect in synthetic diamonds is the paramagnetic nitrogen substitution (P1) center. While the majority of quantum applications rely on nitrogen-vacancy (NV) centers, the properties of the latter are heavily influenced by the presence and the spatial distribution of the P1 centers. Hence, understanding the spatial distribution and mutual interactions of P1 centers is crucial for the successful development of diamond-based quantum devices. Unlike NV centers, P1 centers do not have a spin-dependent optical signature, and their spin-related properties, therefore, have to be detected and characterized using magnetic resonance methods. We show that using high-field (6.9 and 13.8 T) pulsed electron paramagnetic resonance (EPR) and dynamic nuclear polarization (DNP) experiments, we can distinguish and quantify three distinct populations of P1 centers: isolated P1 centers, weakly interacting ones, and exchange-coupled ones that are clustered together. While such clustering was suggested before, these clusters were never detected directly and unambiguously. Moreover, by using electron-electron double resonance (ELDOR) pump-probe experiments, we demonstrate that the latter clustered population does not exist in isolation but coexists with the more weakly interacting P1 centers throughout the diamond lattice. Its presence thus strongly affects the quantum properties of the diamond. We also show that the existence of this population can explain recent hyperpolarization results in type Ib high-pressure, high-temperature (HPHT) diamonds. We propose a combination of high-field pulsed EPR, ELDOR, and DNP as a tool for probing the aggregation state and interactions among different populations of nitrogen substitution centers.

2.
Small ; 19(12): e2205994, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638248

RESUMEN

The interest in development of non-graphitic polymeric carbon nitrides (PCNs), with various C-to-N ratios, having tunable electronic, optical, and chemical properties is rapidly increasing. Here the first self-propagating combustion synthesis methodology for the facile preparation of novel porous PCN materials (PCN3-PCN7) using new nitrogen-rich triazene-based precursors is reported. This methodology is found to be highly precursor dependent, where variations in the terminal functional groups in the newly designed precursors (compounds 3-7) lead to different combustion behaviors, and morphologies of the resulted PCNs. The foam-type highly porous PCN5, generated from self-propagating combustion of 5 is comprehensively characterized and shows a C-to-N ratio of 0.67 (C3 N4.45 ). Thermal analyses of PCN5 formulations with ammonium perchlorate (AP) reveal that PCN5 has an excellent catalytic activity in the thermal decomposition of AP. This catalytic activity of PCN5 is further evaluated in a closer-to-application scenario, showing an increase of 18% in the burn rate of AP-Al-HTPB (with 2 wt% of PCN5) solid composite propellant. The newly developed template- and additive-free self-propagating combustion synthetic methodology using specially designed nitrogen-rich precursors should provide a novel platform for the preparation of non-graphitic PCNs with a variety of building block chemistries, morphologies, and properties suitable for a broad range of technologies.

3.
Solid State Nucl Magn Reson ; 101: 12-20, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075525

RESUMEN

Cross Effect (CE) Dynamic Nuclear Polarization (DNP) relies on the dipolar (D) and exchange (J) coupling interaction between two electron spins. Until recently only the electron spin D coupling was explicitly included in quantifying the DNP mechanism. Recent literature discusses the potential role of J coupling in DNP, but does not provide an account of the distribution and source of electron spin J coupling of commonly used biradicals in DNP. In this study, we quantified the distribution of electron spin J coupling in AMUPol and TOTAPol biradicals using a combination of continuous wave (CW) X-band electron paramagnetic resonance (EPR) lineshape analysis in a series of solvents and at variable temperatures in solution - a state to be vitrified for DNP. We found that both radicals show a temperature dependent distribution of J couplings, and the source of this distribution to be conformational dynamics. To qualify this conformational dependence of J coupling in both molecules we carry out Broken Symmetry DFT calculations which show that the biradical rotamer distribution can account for a large distribution of J couplings, with the magnitude of J coupling directly depending on the relative orientation of the electron spin pair. We demonstrate that the electron spin J couplings in both AMUPol and TOTAPol span a much wider distribution than suggested in the literature. We affirm the importance of electron spin J coupling for DNP with density matrix simulations of DNP in Liouville space and under magic angle spinning, showcasing that a rotamer with high J coupling and optimum relative g-tensor orientation can significantly boost the DNP performance compared to random orientations of the electron spin pair. We conclude that moderate electron spin J coupling above a threshold value can facilitate DNP enhancements.

4.
Soft Matter ; 13(48): 9122-9131, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29192930

RESUMEN

We report here that a dense liquid formed by spontaneous condensation, also known as simple coacervation, of a single mussel foot protein-3S-mimicking peptide exhibits properties critical for underwater adhesion. A structurally homogeneous coacervate is deposited on underwater surfaces as micrometer-thick layers, and, after compression, displays orders of magnitude higher underwater adhesion at 2 N m-1 than that reported from thin films of the most adhesive mussel-foot-derived peptides or their synthetic mimics. The increase in adhesion efficiency does not require nor rely on post-deposition curing or chemical processing, but rather represents an intrinsic physical property of the single-component coacervate. Its wet adhesive and rheological properties correlate with significant dehydration, tight peptide packing and restriction in peptide mobility. We suggest that such dense coacervate liquids represent an essential adaptation for the initial priming stages of mussel adhesive deposition, and provide a hitherto untapped design principle for synthetic underwater adhesives.

5.
Inorg Chem ; 56(11): 6163-6174, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28509562

RESUMEN

The electron transfer mediating properties of type I copper proteins stem from the intricate ligand coordination sphere of the Cu ion in their active site. These redox properties are in part due to unusual cysteine thiol coordination, which forms a highly covalent copper-sulfur (Cu-S) bond. The structure and electronic properties of type I copper have been the subject of many experimental and theoretical studies. The measurement of spin delocalization of the Cu(II) unpaired electron to neighboring ligands provides an elegant experimental way to probe the fine details of the electronic structure of type I copper. To date, the crucial parameter of electron delocalization to the sulfur atom of the cysteine ligand has not been directly determined experimentally. We have prepared 33S-enriched azurin and carried out W-band (95 GHz) electron paramagnetic resonance (EPR) and electron-electron double resonance detected NMR (EDNMR) measurements and, for the first time, recorded the 33S nuclear frequencies, from which the hyperfine coupling and the spin population on the sulfur of the thiolate ligand were derived. The overlapping 33S and 14N EDNMR signals were resolved using a recently introduced two-dimensional correlation technique, 2D-EDNMR. The 33S hyperfine tensor was determined by simulations of the EDNMR spectra using 33S hyperfine and quadrupolar tensors predicted by QM/MM DFT calculations as starting points for a manual spectral fit procedure. To reach a reasonable agreement with the experimental spectra, the 33S hyperfine principal value, Az, and one of the corresponding Euler angles had to be modified. The final values obtained gave an experimentally determined sulfur spin population of 29.8 ± 0.7%, significantly improving the wide range of 29-62% reported in the literature. Our direct, experimentally derived value now provides an important constraint for further theoretical work aimed at unravelling the unique electronic properties of this site.

6.
Phys Chem Chem Phys ; 19(5): 3596-3605, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28094364

RESUMEN

Here, we present an integrated experimental and theoretical study of 1H dynamic nuclear polarization (DNP) of a frozen aqueous glass containing free radicals at 7 T, under static conditions and at temperatures ranging between 4 and 20 K. The DNP studies were performed with a home-built 200 GHz quasi-optics microwave bridge, powered by a tunable solid-state diode source. DNP using monochromatic and continuous wave (cw) irradiation applied to the electron paramagnetic resonance (EPR) spectrum of the radicals induces the transfer of polarization from the electron spins to the surrounding nuclei of the solvent and solutes in the frozen aqueous glass. In our systematic experimental study, the DNP enhanced 1H signals are monitored as a function of microwave frequency, microwave power, radical concentration, and temperature, and are interpreted with the help of electron spin-lattice relaxation times, experimental MW irradiation parameters, and the electron spectral diffusion (eSD) model introduced previously. This comprehensive experimental DNP study with mono-nitroxide radical spin probes was accompanied with theoretical calculations. Our results consistently demonstrate that eSD effects can be significant at 7 T under static DNP conditions, and can be systematically modulated by experimental conditions.

7.
Phys Chem Chem Phys ; 17(17): 11868-83, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25869779

RESUMEN

DNP on heteronuclear spin systems often results in interesting phenomena such as the polarization enhancement of one nucleus during MW irradiation at the "forbidden" transition frequencies of another nucleus or the polarization transfer between the nuclei without MW irradiation. In this work we discuss the spin dynamics in a four-spin model system of the form {ea-eb-((1)H,(13)C)}, with the Larmor frequencies ωa, ωb, ωH and ωC, by performing Liouville space simulations. This spin system exhibits the common (1)H solid effect (SE), (13)C cross effect (CE) and in addition high order CE-DNP enhancements. Here we show, in particular, the "proton shifted (13)C-CE" mechanism that results in (13)C polarization when the model system, at one of its (13)C-CE conditions, is excited by a MW field at the zero quantum or double quantum electron-proton transitions ωMW = ωa ± ωH and ωMW = ωb ± ωH. Furthermore, we introduce the "heteronuclear" CE mechanism that becomes efficient when the system is at one of its combined CE conditions |ωa - ωb| = |ωH ± ωC|. At these conditions, simulations of the four-spin system show polarization transfer processes between the nuclei, during and without MW irradiation, resembling the polarization exchange effects often discussed in the literature. To link the "microscopic" four-spin simulations to the experimental results we use DNP lineshape simulations based on "macroscopic" rate equations describing the electron and nuclear polarization dynamics in large spin systems. This approach is applied based on electron-electron double resonance (ELDOR) measurements that show strong (1)H-SE features outside the EPR frequency range. Simulated ELDOR spectra combined with the indirect (13)C-CE (iCE) mechanism, result in additional "proton shifted (13)C-CE" features that are similar to the experimental ones. These features are also observed experimentally in (13)C-DNP spectra of a sample containing 15 mM of trityl in a glass forming solution of (13)C-glycerol/H2O and are analyzed by calculating the basic (13)C-SE and (13)C-iCE shapes using simulated ELDOR spectra that were fitted to the experimental ones.

8.
Phys Chem Chem Phys ; 17(23): 15098-102, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25994415

RESUMEN

Mn(2+) localization in hairpin 92 of the 23S ribosomal RNA (HP92) was obtained using W-band (95 GHz) DEER (double electron-electron resonance) distance measurements between the Mn(2+) ion and nitroxide spin labels on the RNA. It was found to be preferably situated in the minor groove of the double strand region close to the HP92 loop.


Asunto(s)
Manganeso/química , Óxidos de Nitrógeno/química , ARN Ribosómico 23S/química , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Enlace de Hidrógeno , Conformación de Ácido Nucleico , Marcadores de Spin
9.
J Magn Reson ; 360: 107635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401475

RESUMEN

High-field electron paramagnetic resonance (EPR) measurements are indispensable for a better understanding of dynamic nuclear polarization (DNP), which relies on polarization transfer between electron and nuclear spins. DNP experiments are typically performed at high > 7 T magnetic fields and low ≤ 100 K temperatures, while EPR instrumentation capable of EPR measurements under these conditions is scarce. In this paper, we describe the CW EPR capabilities of a dual DNP/EPR spectrometer that is designed to carry out EPR experiments under "DNP conditions" at 14 and 7 T. In the first part, we present the design of this instrument, highlighting the choices made to allow for both DNP and EPR operations. The spectrometer uses a sweepable cryogen-free magnet with NMR-grade homogeneity, a closed-cycle cooling system, a quasi-optical induction mode bridge, and a superheterodyne receiver system. The probe design is optimized for low heat load and fast sample exchange under cryogenic conditions. The spectrometer can operate in frequency and field sweep modes, including wide field sweeps using the main coil of the magnet. In the second part, we present EPR spectra acquired over a wide range of samples and operating conditions, illustrating the CW EPR capabilities of the instrument.

11.
Phys Chem Chem Phys ; 14(13): 4355-8, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22362220

RESUMEN

The pulse DEER (Double Electron-Electron Resonance) technique is frequently applied for measuring nanometer distances between specific sites in biological macromolecules. In this work we extend the applicability of this method to high field distance measurements in a protein assembly with mixed spin labels, i.e. a nitroxide spin label and a Gd(3+) tag. We demonstrate the possibility of spectroscopic selection of distance distributions between two nitroxide spin labels, a nitroxide spin label and a Gd(3+) ion, and two Gd(3+) ions. Gd(3+)-nitroxide DEER measurements possess high potential for W-band long range distance measurements (6 nm) by combining high sensitivity with ease of data analysis, subject to some instrumental improvements.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Gadolinio/química , Proteínas de Choque Térmico/química , Óxidos de Nitrógeno/química , Marcadores de Spin , Dimerización , Modelos Moleculares , Estructura Molecular
12.
J Am Chem Soc ; 133(39): 15514-23, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21819147

RESUMEN

The RNA helicase DbpA promotes RNA remodeling coupled to ATP hydrolysis. It is unique because of its specificity to hairpin 92 of 23S rRNA (HP92). Although DbpA kinetic pathways leading to ATP hydrolysis and RNA unwinding have been recently elucidated, the molecular (atomic) basis for the coupling of ATP hydrolysis to RNA remodeling remains unclear. This is, in part, due to the lack of detailed structural information on the ATPase site in the presence and absence of RNA in solution. We used high-field pulse ENDOR (electron-nuclear double resonance) spectroscopy to detect and analyze fine conformational changes in the protein's ATPase site in solution. Specifically, we substituted the essential Mg(2+) cofactor in the ATPase active site for paramagnetic Mn(2+) and determined its close environment with different nucleotides (ADP, ATP, and the ATP analogues ATPγS and AMPPnP) in complex with single- and double-stranded RNA. We monitored the Mn(2+) interactions with the nucleotide phosphates through the (31)P hyperfine couplings and the coordination by protein residues through (13)C hyperfine coupling from (13)C-enriched DbpA. We observed that the nucleotide binding site of DbpA adopts different conformational states upon binding of different nucleotides. The ENDOR spectra revealed a clear distinction between hydrolyzable and nonhydrolyzable nucleotides prior to RNA binding. Furthermore, both the (13)C and the (31)P ENDOR spectra were found to be highly sensitive to changes in the local environment of the Mn(2+) ion induced by the hydrolysis. More specifically, ATPγS was efficiently hydrolyzed upon binding of RNA, similar to ATP. Importantly, the Mn(2+) cofactor remains bound to a single protein side chain and to one or two nucleotide phosphates in all complexes, whereas the remaining metal coordination positions are occupied by water. The conformational changes in the protein's ATPase active site associated with the different DbpA states occur in remote coordination shells of the Mn(2+) ion. Finally, a competitive Mn(2+) binding site was found for single-stranded RNA construct.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Dominio Catalítico , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Secuencia de Bases , Coenzimas/metabolismo , Manganeso/metabolismo , Modelos Moleculares , ARN/genética , ARN/metabolismo , Ribonucleótidos/genética , Ribonucleótidos/metabolismo
13.
Phys Chem Chem Phys ; 13(22): 10771-80, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21552622

RESUMEN

We present high field DEER (double electron-electron resonance) distance measurements using Gd(3+) (S = 7/2) spin labels for probing peptides' conformations in solution. The motivation for using Gd(3+) spin labels as an alternative for the standard nitroxide spin labels is the sensitivity improvement they offer because of their very intense EPR signal at high magnetic fields. Gd(3+) was coordinated by dipicolinic acid derivative (4MMDPA) tags that were covalently attached to two cysteine thiol groups. Cysteines were introduced in positions 15 and 27 of the peptide melittin and then two types of spin labeled melittins were prepared, one labeled with two nitroxide spin labels and the other with two 4MMDPA-Gd(3+) labels. Both types were subjected to W-band (95 GHz, 3.5 T) DEER measurements. For the Gd(3+) labeled peptide we explored the effect of the solution molar ratio of Gd(3+) and the labeled peptide, the temperature, and the maximum dipolar evolution time T on the DEER modulation depth. We found that the optimization of the [Gd(3+)]/[Tag] ratio is crucial because excess Gd(3+) masked the DEER effect and too little Gd(3+) resulted in the formation of Gd(3+)-tag(2) complexes, generating peptide dimers. In addition, we observed that the DEER modulation depth is sensitive to spectral diffusion processes even at Gd(3+) concentrations as low as 0.2 mM and therefore experimental conditions should be chosen to minimize it as it decreases the DEER effect. Finally, the distance between the two Gd(3+) ions, 3.4 nm, was found to be longer by 1.2 nm than the distance between the two nitroxides. The origin and implications of this difference are discussed.


Asunto(s)
Complejos de Coordinación/química , Gadolinio/química , Péptidos/química , Ácidos Picolínicos/química , Espectroscopía de Resonancia por Spin del Electrón , Meliteno/química , Método de Montecarlo , Marcadores de Spin
14.
Chemistry ; 16(33): 10014-20, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20645349

RESUMEN

An in-depth spectroscopic EPR investigation of a key intermediate, formally notated as [PV(IV)V(V)Mo(10)O(40)](6-) and formed in known electron-transfer and electron-transfer/oxygen-transfer reactions catalyzed by H(5)PV(2)Mo(10)O(40), has been carried out. Pulsed EPR spectroscopy have been utilized: specifically, W-band electron-electron double resonance (ELDOR)-detected NMR and two-dimensional (2D) hyperfine sub-level correlation (HYSCORE) measurements, which resolved (95)Mo and (17)O hyperfine interactions, and electron-nuclear double resonance (ENDOR), which gave the weak (51)V and (31)P interactions. In this way, two paramagnetic species related to [PV(IV)V(V)Mo(10)O(40)](6-) were identified. The first species (30-35 %) has a vanadyl (VO(2+))-like EPR spectrum and is not situated within the polyoxometalate cluster. Here the VO(2+) was suggested to be supported on the Keggin cluster and can be represented as an ion pair, [PV(V)Mo(10)O(39)](8-)[V(IV)O(2+)]. This species originates from the parent H(5)PV(2)Mo(10)O(40) in which the vanadium atoms are nearest neighbors and it is suggested that this isomer is more likely to be reactive in electron-transfer/oxygen-transfer reaction oxidation reactions. In the second (70-65 %) species, the V(IV) remains embedded within the polyoxometalate framework and originates from reduction of distal H(5)PV(2)Mo(10)O(40) isomers to yield an intact cluster, [PV(IV)V(V)Mo(10)O(40)](6-).


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxígeno/química , Compuestos de Tungsteno/química , Catálisis , Transporte de Electrón , Espectroscopía de Resonancia Magnética/métodos , Oxidación-Reducción
16.
Inorg Chem ; 48(16): 7947-52, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19618906

RESUMEN

The H(5)PV(2)Mo(10)O(40) polyoxometalate and Pd/Al(2)O(3) were used as co-catalysts under anaerobic conditions for the activation and oxidation of CO to CO(2) by an electron transfer-oxygen transfer mechanism. Upon anaerobic reduction of H(5)PV(2)Mo(10)O(40) with CO in the presence of Pd(0) two paramagnetic species were observed and characterized by continuous wave electron paramagnetic resonance (CW-EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopic measurements. Major species I (65-70%) is assigned to a species resembling a vanadyl cation that is supported on the polyoxometalate and showed a bonding interaction with (13)CO. Minor species II (30-35%) is attributed to a reduced species where the vanadium(IV) atom is incorporated in the polyoxometalate framework but slightly distanced from the phosphate core. Under aerobic conditions, CO/O(2), a nucleophilic oxidant was formed as elucidated by oxidation of thianthrene oxide as a probe substrate. Oxidation reactions performed on terminal alkenes such as 1-octene yielded a complicated mixture of products that was, however, clearly a result of alkene epoxidation followed by subsequent reactions of the intermediate epoxide. The significant competing reaction was a hydrocarbonylation reaction that yielded a approximately 1:1 mixture of linear/branched carboxylic acids.

17.
J Phys Chem Lett ; 9(11): 3110-3115, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29775537

RESUMEN

Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).

18.
J Magn Reson ; 279: 81-90, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28482216

RESUMEN

We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7T. This is achieved with the integration of a 1GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200GHz with >150mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200GHz. We demonstrate that in the power-limited regime of ω1<1MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200GHz.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Algoritmos , Conversión Analogo-Digital , Isótopos de Carbono , Simulación por Computador , Microondas , Poliestirenos/química , Procesamiento de Señales Asistido por Computador , Programas Informáticos
19.
J Magn Reson ; 264: 131-153, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26920839

RESUMEN

Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Automatización , Frío , Campos Electromagnéticos , Radicales Libres/análisis , Microondas , Programas Informáticos
20.
Methods Mol Biol ; 1259: 137-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25579585

RESUMEN

Electron-nuclear double resonance (ENDOR) is a method that probes the local structure of paramagnetic centers via their hyperfine interactions with nearby magnetic nuclei. Here we describe the use of this technique to structurally characterize the ATPase active site of the RNA helicase DbpA, where Mg(2+)-ATP binds. This is achieved by substituting the EPR (electron paramagnetic resonance) silent Mg(2+) ion with paramagnetic, EPR active, Mn(2+) ion. (31)P ENDOR provides the interaction of the Mn(2+) with the nucleotide (ADP, ATP and its analogs) through the phosphates. The ENDOR spectra clearly distinguish between ATP- and ADP-binding modes. In addition, by preparing (13)C-enriched DbpA, (13)C ENDOR is used to probe the interaction of the Mn(2+) with protein residues. This combination allows tracking structural changes in the Mn(2+) coordination shell, in the ATPase site, in different states of the protein, namely with and without RNA and with different ATP analogs. Here, a detailed description of sample preparation and the ENDOR measurement methodology is provided, focusing on measurements at W-band (95 GHz) where sensitivity is high and spectral interpretations are relatively simple.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dominio Catalítico , Escherichia coli , Manganeso/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA