Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mutat ; 34(6): 915-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23463607

RESUMEN

The 2012 International Standards for Cytogenomic Arrays (ISCA) Consortium Meeting, "Towards a Universal Clinical Genomic Database," was held in Bethesda, Maryland, May 21-22, 2012, and was attended by over 200 individuals from around the world representing clinical genetic testing laboratories, clinicians, academia, industry, research, and regulatory agencies. The scientific program centered on expanding the current focus of the ISCA Consortium to include the collection and curation of both structural and sequence-level variation into a unified clinical genomics database, available to the public through resources such as the National Center for Biotechnology Information's ClinVar database. Here, we provide an overview of the conference, with summaries of the topics presented for discussion by over 25 different speakers. Presentations are available online at www.iscaconsortium.org.


Asunto(s)
Bases de Datos Genéticas , Genómica , Humanos
2.
Am J Hum Genet ; 87(5): 618-30, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21055719

RESUMEN

Autism spectrum disorders (ASD) and schizophrenia are neurodevelopmental disorders for which recent evidence indicates an important etiologic role for rare copy number variants (CNVs) and suggests common genetic mechanisms. We performed cytogenomic array analysis in a discovery sample of patients with neurodevelopmental disorders referred for clinical testing. We detected a recurrent 1.4 Mb deletion at 17q12, which harbors HNF1B, the gene responsible for renal cysts and diabetes syndrome (RCAD), in 18/15,749 patients, including several with ASD, but 0/4,519 controls. We identified additional shared phenotypic features among nine patients available for clinical assessment, including macrocephaly, characteristic facial features, renal anomalies, and neurocognitive impairments. In a large follow-up sample, the same deletion was identified in 2/1,182 ASD/neurocognitive impairment and in 4/6,340 schizophrenia patients, but in 0/47,929 controls (corrected p = 7.37 × 10⁻5). These data demonstrate that deletion 17q12 is a recurrent, pathogenic CNV that confers a very high risk for ASD and schizophrenia and show that one or more of the 15 genes in the deleted interval is dosage sensitive and essential for normal brain development and function. In addition, the phenotypic features of patients with this CNV are consistent with a contiguous gene syndrome that extends beyond RCAD, which is caused by HNF1B mutations only.


Asunto(s)
Cromosomas Humanos Par 17 , Variaciones en el Número de Copia de ADN , Esquizofrenia/genética , Eliminación de Secuencia , Niño , Trastornos Generalizados del Desarrollo Infantil/genética , Preescolar , Facies , Femenino , Humanos , Masculino , Fenotipo
3.
Am J Hum Genet ; 86(5): 749-64, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20466091

RESUMEN

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


Asunto(s)
Trastornos de los Cromosomas/genética , Anomalías Congénitas/genética , Discapacidades del Desarrollo/genética , Niño , Bandeo Cromosómico , Humanos , Cariotipificación
4.
Hum Mol Genet ; 18(16): 2957-62, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19443486

RESUMEN

Copy number studies have led to an explosion in the discovery of new segmental duplication-mediated deletions and duplications. We have analyzed copy number changes in 2419 patients referred for clinical array comparative genomic hybridization studies. Twenty-three percent of the abnormal copy number changes we found are immediately flanked by segmental duplications > or =10 kb in size and > or =95% identical in direct orientation, consistent with deletions and duplications generated by non-allelic homologous recombination. Here, we describe copy number changes in five previously unreported loci with genomic organization characteristic of NAHR-mediated gains and losses; namely, 2q11.2, 7q36.1, 17q23, 2q13 and 7q11.21. Deletions and duplications of 2q11.2, deletions of 7q36.1 and deletions of 17q23 are interpreted as pathogenic based on their genomic size, gene content, de novo inheritance and absence from control populations. The clinical significance of 2q13 deletions and duplications is still emerging, as these imbalances are also found in phenotypically normal family members and control individuals. Deletion of 7q11.21 is a benign copy number change well represented in control populations and copy number variation databases. Here, we discuss the genetic factors that can modify the phenotypic expression of such gains and losses, which likely play a role in these and other recurrent genomic disorders.


Asunto(s)
Aberraciones Cromosómicas , Duplicación de Gen , Enfermedades Genéticas Congénitas/genética , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 7/genética , Hibridación Genómica Comparativa , Dosificación de Gen , Humanos , Masculino
5.
Genet Med ; 13(9): 777-84, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21844811

RESUMEN

PURPOSE: Copy number variants have emerged as a major cause of human disease such as autism and intellectual disabilities. Because copy number variants are common in normal individuals, determining the functional and clinical significance of rare copy number variants in patients remains challenging. The adoption of whole-genome chromosomal microarray analysis as a first-tier diagnostic test for individuals with unexplained developmental disabilities provides a unique opportunity to obtain large copy number variant datasets generated through routine patient care. METHODS: A consortium of diagnostic laboratories was established (the International Standards for Cytogenomic Arrays consortium) to share copy number variant and phenotypic data in a central, public database. We present the largest copy number variant case-control study to date comprising 15,749 International Standards for Cytogenomic Arrays cases and 10,118 published controls, focusing our initial analysis on recurrent deletions and duplications involving 14 copy number variant regions. RESULTS: Compared with controls, 14 deletions and seven duplications were significantly overrepresented in cases, providing a clinical diagnosis as pathogenic. CONCLUSION: Given the rapid expansion of clinical chromosomal microarray analysis testing, very large datasets will be available to determine the functional significance of increasingly rare copy number variants. This data will provide an evidence-based guide to clinicians across many disciplines involved in the diagnosis, management, and care of these patients and their families.


Asunto(s)
Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Medicina Basada en la Evidencia/métodos , Discapacidad Intelectual/genética , Análisis Citogenético , Dosificación de Gen , Genoma Humano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA