Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 109(18): 186101, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215299

RESUMEN

We used ultrafast electron diffraction and density-functional theory calculations to gain insight into the charge density wave (CDW) formation on In/Si(111). Weak excitation by a femtosecond-laser pulse results in the melting of the CDW. The immediate freezing is hindered by a barrier for the motion of atoms during the phase transition: The melted CDW constitutes a long-lived, supercooled phase and is strong evidence for a first-order transition. The freezing into the CDW is triggered by preexisting adsorbates. Starting at these condensation nuclei, the CDW expands one dimensionally on the In/Si(111) surface, with a constant velocity of more than 80 m/s.

2.
Sci Rep ; 8(1): 9361, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921894

RESUMEN

We show that templating a Si surface with a focused beam of Si2+ or Si+ ions can create suitable nucleation sites for the subsequent growth of self-assembled Ge quantum dots by chemical vapor deposition. To determine the mechanism of patterning we use atomic force microscopy to show that, similar to Ga+ patterning, the formation of a surface pit is required to enable control over Ge quantum dot locations. We find that relatively high implantation doses are required to achieve patterning, and these doses lead to amorphization of the substrate. We assess the degree to which the substrate crystallinity can be recovered by subsequent processing. Using in situ transmission electron microscopy heating experiments we find that recrystallization is possible at the growth temperature of the Ge quantum dots, but defects remain that follow the pattern of the initial implantation. We discuss the formation mechanism of the defects and the benefits of using Si ions for patterning both defects and quantum dots on Si substrates.

3.
Ultramicroscopy ; 127: 126-31, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22951265

RESUMEN

We use focused beams of Ga(+), Au(+) and Si(++) ions to induce local microstructural changes in single crystal silicon. The ions were delivered as single spot pulses into thin Si membranes that could subsequently be imaged and annealed in situ in a transmission electron microscope. For each ion, the focused ion beam implantation created an array of amorphous regions in the crystalline membrane. Annealing causes solid phase epitaxial regrowth to take place, but we show that the resulting microstructure depends on the ion species. For Ga(+) and Au(+), precipitates remain after recrystallization, while for Si(++), dislocation loops form around the periphery of each implanted spot. We attribute these loops to defects formed during solid phase epitaxial regrowth, with controlled placement of the loops possible.

4.
Nature ; 422(6929): 287-9, 2003 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-12646915

RESUMEN

The study of phase-transition dynamics in solids beyond a time-averaged kinetic description requires direct measurement of the changes in the atomic configuration along the physical pathways leading to the new phase. The timescale of interest is in the range 10(-14) to 10(-12) s. Until recently, only optical techniques were capable of providing adequate time resolution, albeit with indirect sensitivity to structural arrangement. Ultrafast laser-induced changes of long-range order have recently been directly established for some materials using time-resolved X-ray diffraction. However, the measurement of the atomic displacements within the unit cell, as well as their relationship with the stability limit of a structural phase, has to date remained obscure. Here we report time-resolved X-ray diffraction measurements of the coherent atomic displacement of the lattice atoms in photoexcited bismuth close to a phase transition. Excitation of large-amplitude coherent optical phonons gives rise to a periodic modulation of the X-ray diffraction efficiency. Stronger excitation corresponding to atomic displacements exceeding 10 per cent of the nearest-neighbour distance-near the Lindemann limit-leads to a subsequent loss of long-range order, which is most probably due to melting of the material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA