Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Oncol (R Coll Radiol) ; 35(6): 354-369, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36803407

RESUMEN

Auto-contouring could revolutionise future planning of radiotherapy treatment. The lack of consensus on how to assess and validate auto-contouring systems currently limits clinical use. This review formally quantifies the assessment metrics used in studies published during one calendar year and assesses the need for standardised practice. A PubMed literature search was undertaken for papers evaluating radiotherapy auto-contouring published during 2021. Papers were assessed for types of metric and the methodology used to generate ground-truth comparators. Our PubMed search identified 212 studies, of which 117 met the criteria for clinical review. Geometric assessment metrics were used in 116 of 117 studies (99.1%). This includes the Dice Similarity Coefficient used in 113 (96.6%) studies. Clinically relevant metrics, such as qualitative, dosimetric and time-saving metrics, were less frequently used in 22 (18.8%), 27 (23.1%) and 18 (15.4%) of 117 studies, respectively. There was heterogeneity within each category of metric. Over 90 different names for geometric measures were used. Methods for qualitative assessment were different in all but two papers. Variation existed in the methods used to generate radiotherapy plans for dosimetric assessment. Consideration of editing time was only given in 11 (9.4%) papers. A single manual contour as a ground-truth comparator was used in 65 (55.6%) studies. Only 31 (26.5%) studies compared auto-contours to usual inter- and/or intra-observer variation. In conclusion, significant variation exists in how research papers currently assess the accuracy of automatically generated contours. Geometric measures are the most popular, however their clinical utility is unknown. There is heterogeneity in the methods used to perform clinical assessment. Considering the different stages of system implementation may provide a framework to decide the most appropriate metrics. This analysis supports the need for a consensus on the clinical implementation of auto-contouring.


Asunto(s)
Oncología por Radiación , Planificación de la Radioterapia Asistida por Computador , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Benchmarking , Radiometría/métodos , Órganos en Riesgo
2.
AJNR Am J Neuroradiol ; 40(6): 938-945, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31147354

RESUMEN

BACKGROUND AND PURPOSE: Accurate automated infarct segmentation is needed for acute ischemic stroke studies relying on infarct volumes as an imaging phenotype or biomarker that require large numbers of subjects. This study investigated whether an ensemble of convolutional neural networks trained on multiparametric DWI maps outperforms single networks trained on solo DWI parametric maps. MATERIALS AND METHODS: Convolutional neural networks were trained on combinations of DWI, ADC, and low b-value-weighted images from 116 subjects. The performances of the networks (measured by the Dice score, sensitivity, and precision) were compared with one another and with ensembles of 5 networks. To assess the generalizability of the approach, we applied the best-performing model to an independent Evaluation Cohort of 151 subjects. Agreement between manual and automated segmentations for identifying patients with large lesion volumes was calculated across multiple thresholds (21, 31, 51, and 70 cm3). RESULTS: An ensemble of convolutional neural networks trained on DWI, ADC, and low b-value-weighted images produced the most accurate acute infarct segmentation over individual networks (P < .001). Automated volumes correlated with manually measured volumes (Spearman ρ = 0.91, P < .001) for the independent cohort. For the task of identifying patients with large lesion volumes, agreement between manual outlines and automated outlines was high (Cohen κ, 0.86-0.90; P < .001). CONCLUSIONS: Acute infarcts are more accurately segmented using ensembles of convolutional neural networks trained with multiparametric maps than by using a single model trained with a solo map. Automated lesion segmentation has high agreement with manual techniques for identifying patients with large lesion volumes.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Redes Neurales de la Computación , Neuroimagen/métodos , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA