Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mol Genet ; 32(9): 1511-1523, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36579833

RESUMEN

At the neuromuscular junction, the downstream of tyrosine kinase 7 (DOK7) enhances the phosphorylation of muscle-specific kinase (MuSK) and induces clustering of acetylcholine receptors (AChRs). We identified a patient with congenital myasthenic syndrome (CMS) with two heteroallelic mutations in DOK7, c.653-1G>C in intron 5 and c.190G>A predicting p.G64R in the pleckstrin homology domain. iPS cells established from the patient (CMS-iPSCs) showed that c.653-1G>C caused in-frame skipping of exon 6 (120 bp) and frame-shifting activation of a cryptic splice site deleting seven nucleotides in exon 6. p.G64R reduced the expression of DOK7 to 10% of wild-type DOK7, and markedly compromised AChR clustering in transfected C2C12 myotubes. p.G64R-DOK7 made insoluble aggresomes at the juxtanuclear region in transfected C2C12 myoblasts and COS7 cells, which were co-localized with molecules in the autophagosome system. A protease inhibitor MG132 reduced the soluble fraction of p.G64R-DOK7 and enhanced the aggresome formation of p.G64R-DOK7. To match the differentiation levels between patient-derived and control induced pluripotent stem cells (iPSCs), we corrected c.190G>A (p.G64R) by CRISPR/Cas9 to make isogenic iPSCs while retaining c.653-1G>C (CMS-iPSCsCas9). Myogenically differentiated CMS-iPSCs showed juxtanuclear aggregates of DOK7, reduced expression of endogenous DOK7 and reduced phosphorylation of endogenous MuSK. Another mutation, p.T77M, also made aggresome to a less extent compared with p.G64R in transfected COS7 cells. These results suggest that p.G64R-DOK7 makes aggresomes in cultured cells and is likely to compromise MuSK phosphorylation for AChR clustering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes Miasténicos Congénitos , Humanos , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Musculares/genética , Mutación , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Fosforilación , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
2.
Exp Eye Res ; 243: 109916, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679224

RESUMEN

The conjunctiva is a non-keratinized, stratified columnar epithelium with characteristics different from the cornea and eyelid epidermis. From development to adulthood, a distinguishing feature of ocular versus epidermal epithelia is the expression of the master regulator PAX6. A conditionally immortalized conjunctival epithelial cell line (iHCjEC) devoid of stromal or immune cells established in our laboratory spontaneously manifested epidermal metaplasia and upregulated expression of the keratinization-related genes SPRR1A/B and the epidermal cytokeratins KRT1 and KRT10 at the expense of the conjunctival trait. In addition, iHCjEC indicated a significant decrease in PAX6 expression. Dry eye syndrome (DES) and severe ocular surface diseases, such as Sjögren's syndrome and Stevens-Johnson syndrome, cause the keratinization of the entire ocular surface epithelia. We used iHCjECs as a conjunctiva epidermal metaplasia model to test PAX6, serum, and glucocorticoid interventions. Reintroducing PAX6 to iHCjECs resulted in upregulating genes related to cell adhesion and tight junctions, including MIR200CHG and CLDN1. The administration of glucocorticoids or serum resulted in the downregulation of epidermal genes (DSG1, SPRR1A/B, and KRT1) and partially corrected epidermal metaplasia. Our results using an isolated conjunctival epidermal metaplasia model point toward the possibility of rationally "repurposing" clinical interventions, such as glucocorticoid, serum, or PAX6 administration, for treating epidermal metaplasia of the conjunctiva.


Asunto(s)
Conjuntiva , Metaplasia , Conjuntiva/patología , Conjuntiva/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucocorticoides/uso terapéutico , Regulación de la Expresión Génica , Epidermis/patología , Epidermis/metabolismo , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa , Línea Celular
3.
Proc Natl Acad Sci U S A ; 110(16): 6412-7, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23550161

RESUMEN

Transcription factors (TFs) are able to regulate differentiation-related processes, including dedifferentiation and direct conversion, through the regulation of cell type-specific transcriptional profiles. However, the functional interactions between the TFs regulating different transcriptional profiles are not well understood. Here, we show that the TFs capable of inducing cell type-specific transcriptional profiles prevent the dedifferentiation induced by TFs for pluripotency. Of the large number of TFs expressed in a neural-lineage cell line, we identified a subset of TFs that, when overexpressed, strongly interfered with the dedifferentiation triggered by the procedure to generate induced pluripotent stem cells. This interference occurred through a maintenance mechanism of the cell type-specific transcriptional profile. Strikingly, the maintenance activity of the interfering TF set was strong enough to induce the cell line-specific transcriptional profile when overexpressed in a heterologous cell type. In addition, the TFs that interfered with dedifferentiation in hepatic-lineage cells involved TFs with known induction activity for hepatic-lineage cells. Our results suggest that dedifferentiation suppresses a cell type-specific transcriptional profile, which is primarily maintained by a small subset of TFs capable of inducing direct conversion. We anticipate that this functional correlation might be applicable in various cell types and might facilitate the identification of TFs with induction activity in efforts to understand differentiation.


Asunto(s)
Desdiferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Células Madre Pluripotentes/fisiología , Factores de Transcripción/metabolismo , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Hepatocitos/citología , Ratones , Microscopía Electrónica de Transmisión , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos/genética , ARN Interferente Pequeño/genética
4.
Stem Cells ; 30(8): 1634-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22696478

RESUMEN

c-Myc participates in diverse cellular processes including cell cycle control, tumorigenic transformation, and reprogramming of somatic cells to induced pluripotent cells. c-Myc is also an important regulator of self-renewal and pluripotency of embryonic stem cells (ESCs). We recently demonstrated that loss of the Max gene, encoding the best characterized partner for all Myc family proteins, causes loss of the pluripotent state and extensive cell death in ESCs strictly in this order. However, the mechanisms and molecules that are responsible for these phenotypes remain largely obscure. Here, we show that Sirt1, p53, and p38(MAPK) are crucially involved in the detrimental phenotype of Max-null ESCs. Moreover, our analyses revealed that these proteins are involved at varying levels to one another in the hierarchy of the pathway leading to cell death in Max-null ESCs.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Antioxidantes/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Muerte Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Doxiciclina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Humanos , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Transfección , Proteína p53 Supresora de Tumor/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Sci Rep ; 10(1): 2558, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054946

RESUMEN

Muscleblind-like 1 (MBNL1) is a ubiquitously expressed RNA-binding protein, which is highly expressed in skeletal muscle. Abnormally expanded CUG-repeats in the DMPK gene cause myotonic dystrophy type 1 (DM1) by sequestration of MBNL1 to nuclear RNA foci and by upregulation of another RNA-binding protein, CUG-binding protein 1 (CUGBP1). We previously reported that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone, upregulates MBNL1 expression in DM1 mouse model by demethylation of MeR2, an enhancer element in Mbnl1 intron 1. NSAIDs inhibit cyclooxygenase (COX), which is comprised of COX-1 and COX-2 isoforms. In this study, we screened 29 NSAIDs in C2C12 myoblasts, and found that 13 NSAIDs enhanced Mbnl1 expression, where COX-1-selective NSAIDs upregulated Mbnl1 more than COX-2-selective NSAIDs. Consistently, knockdown of COX-1, but not of COX-2, upregulated MBNL1 expression in C2C12 myoblasts and myotubes, as well as in myotubes differentiated from DM1 patient-derived induced pluripotent stem cells (iPSCs). Luciferase assay showed that COX-1-knockdown augmented the MeR2 enhancer activity. Furthermore, bisulfite sequencing analysis demonstrated that COX-1-knockdown suppressed methylation of MeR2. These results suggest that COX-1 inhibition upregulates Mbnl1 transcription through demethylation of the MeR2 enhancer. Taken together, our study provides new insights into the transcriptional regulation of Mbnl1 by the COX-1-mediated pathway.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/genética , Distrofia Miotónica/tratamiento farmacológico , Proteínas de Unión al ARN/genética , Animales , Antiinflamatorios no Esteroideos/clasificación , Proteínas CELF1/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Fenilbutazona/farmacología
6.
Cell Biol Int ; 34(1): 109-16, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19947947

RESUMEN

Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(-)-epigallocatechin-3-gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3-E1, and co-culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3-E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3-E1 cells, and reduced osteoclast formation in co-culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.


Asunto(s)
Catequina/análogos & derivados , Osteoblastos/citología , Animales , Células de la Médula Ósea/citología , Catequina/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Técnicas de Cocultivo , Ratones , Osteoblastos/efectos de los fármacos , Té/química
7.
Sci Rep ; 7: 42522, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28211918

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal-dominant multi-system disease caused by expanded CTG repeats in dystrophia myotonica protein kinase (DMPK). The expanded CTG repeats are unstable and can increase the length of the gene with age, which worsens the symptoms. In order to establish a human stem cell system suitable for the investigation of repeat instability, DM1 patient-derived iPSCs were generated and differentiated into three cell types commonly affected in DM1, namely cardiomyocytes, neurons and myocytes. Then we precisely analysed the CTG repeat lengths in these cells. Our DM1-iPSCs showed a gradual lengthening of CTG repeats with unchanged repeat distribution in all cell lines depending on the passage numbers of undifferentiated cells. However, the average CTG repeat length did not change significantly after differentiation into different somatic cell types. We also evaluated the chromatin accessibility in DM1-iPSCs using ATAC-seq. The chromatin status in DM1 cardiomyocytes was closed at the DMPK locus as well as at SIX5 and its promoter region, whereas it was open in control, suggesting that the epigenetic modifications may be related to the CTG repeat expansion in DM1. These findings may help clarify the role of repeat instability in the CTG repeat expansion in DM1.


Asunto(s)
Inestabilidad Genómica , Células Madre Pluripotentes Inducidas/metabolismo , Distrofia Miotónica/genética , Repeticiones de Trinucleótidos , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina , Humanos , Células Madre Pluripotentes Inducidas/citología , Cariotipo , Células Musculares/citología , Células Musculares/metabolismo , Neuronas/citología , Neuronas/metabolismo , Empalme del ARN , Expansión de Repetición de Trinucleótido
8.
Stem Cells Dev ; 23(18): 2170-9, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24200330

RESUMEN

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by defined factors. However, substantial cell numbers subjected to iPSC induction stray from the main reprogramming route and are immortalized as partial iPSCs. These partial iPSCs can become genuine iPSCs by exposure to the ground state condition. However, such conversion is only possible for mouse partial iPSCs, and it is not applicable to human cells. Moreover, the molecular basis of this conversion is completely unknown. Therefore, we performed genome-wide screening with a piggyBac vector to identify genes involved in conversion from partial to genuine iPSCs. This screening led to identification of Cnot2, one of the core components of the Ccr4-Not complex. Subsequent analyses revealed that other core components, Cnot1 and Cnot3, also contributed to the conversion. Thus, our data have uncovered a novel role of core components of the Ccr4-Not complex as regulators of transition from partial to genuine iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Complejos Multiproteicos/metabolismo , Receptores CCR4/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Separación Celular , Células Clonales , Regulación hacia Abajo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito
9.
PLoS One ; 8(12): e83769, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386274

RESUMEN

Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties.


Asunto(s)
Células Madre Embrionarias/metabolismo , Estratos Germinativos/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcriptoma , Animales , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
PLoS One ; 8(7): e68119, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874519

RESUMEN

Embryogenesis in placental mammals is sustained by exquisite interplay between the embryo proper and placenta. UTF1 is a developmentally regulated gene expressed in both cell lineages. Here, we analyzed the consequence of loss of the UTF1 gene during mouse development. We found that homozygous UTF1 mutant newborn mice were significantly smaller than wild-type or heterozygous mutant mice, suggesting that placental insufficiency caused by the loss of UTF1 expression in extra-embryonic ectodermal cells at least in part contributed to this phenotype. We also found that the effects of loss of UTF1 expression in embryonic stem cells on their pluripotency were very subtle. Genome structure and sequence comparisons revealed that the UTF1 gene exists only in placental mammals. Our analyses of a family of genes with homology to UTF1 revealed a possible mechanism by which placental mammals have evolved the UTF1 genes.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Desarrollo Embrionario/genética , Transactivadores/genética , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/química , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Evolución Molecular , Femenino , Técnicas de Inactivación de Genes , Marcación de Gen , Genotipo , Ratones , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Placenta/embriología , Placenta/metabolismo , Embarazo , Alineación de Secuencia , Transactivadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA