RESUMEN
BACKGROUND: Routine malaria surveillance data in Africa primarily come from public health facilities reporting to national health management information systems. Although information on gender is routinely collected from patients presenting to these health facilities, stratification of malaria surveillance data by gender is rarely done. This study evaluated gender difference among patients diagnosed with parasitological confirmed malaria at public health facilities in Uganda. METHODS: This study utilized individual level patient data collected from January 2020 through April 2021 at 12 public health facilities in Uganda and cross-sectional surveys conducted in target areas around these facilities in April 2021. Associations between gender and the incidence of malaria and non-malarial visits captured at the health facilities from patients residing within the target areas were estimated using poisson regression models controlling for seasonality. Associations between gender and data on health-seeking behaviour from the cross-sectional surveys were estimated using poisson regression models controlling for seasonality. RESULTS: Overall, incidence of malaria diagnosed per 1000 person years was 735 among females and 449 among males (IRR = 1.72, 95% CI 1.68-1.77, p < 0.001), with larger differences among those 15-39 years (IRR = 2.46, 95% CI 2.34-2.58, p < 0.001) and over 39 years (IRR = 2.26, 95% CI 2.05-2.50, p < 0.001) compared to those under 15 years (IRR = 1.46, 95% CI 1.41-1.50, p < 0.001). Female gender was also associated with a higher incidence of visits where malaria was not suspected (IRR = 1.77, 95% CI 1.71-1.83, p < 0.001), with a similar pattern across age strata. These associations were consistent across the 12 individual health centres. From the cross-sectional surveys, females were more likely than males to report fever in the past 2 weeks and seek care at the local health centre (7.5% vs. 4.7%, p = 0.001) with these associations significant for those 15-39 years (RR = 2.49, 95% CI 1.17-5.31, p = 0.018) and over 39 years (RR = 2.56, 95% CI 1.00-6.54, p = 0.049). CONCLUSIONS: Females disproportionately contribute to the burden of malaria diagnosed at public health facilities in Uganda, especially once they reach childbearing age. Contributing factors included more frequent visits to these facilities independent of malaria and a higher reported risk of seeking care at these facilities for febrile illnesses.
Asunto(s)
Instituciones de Salud/estadística & datos numéricos , Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Incidencia , Malaria/diagnóstico , Masculino , Persona de Mediana Edad , Factores Sexuales , Uganda/epidemiología , Adulto JovenRESUMEN
BACKGROUND: Environmental factors such as temperature, rainfall, and vegetation cover play a critical role in malaria transmission. However, quantifying the relationships between environmental factors and measures of disease burden relevant for public health can be complex as effects are often non-linear and subject to temporal lags between when changes in environmental factors lead to changes in malaria incidence. The study investigated the effect of environmental covariates on malaria incidence in high transmission settings of Uganda. METHODS: This study leveraged data from seven malaria reference centres (MRCs) located in high transmission settings of Uganda over a 24-month period. Estimates of monthly malaria incidence (MI) were derived from MRCs' catchment areas. Environmental data including monthly temperature, rainfall, and normalized difference vegetation index (NDVI) were obtained from remote sensing sources. A distributed lag nonlinear model was used to investigate the effect of environmental covariates on malaria incidence. RESULTS: Overall, the median (range) monthly temperature was 30 °C (26-47), rainfall 133.0 mm (3.0-247), NDVI 0.66 (0.24-0.80) and MI was 790 per 1000 person-years (73-3973). Temperature of 35 °C was significantly associated with malaria incidence compared to the median observed temperature (30 °C) at month lag 2 (IRR: 2.00, 95% CI: 1.42-2.83) and the increased cumulative IRR of malaria at month lags 1-4, with the highest cumulative IRR of 8.16 (95% CI: 3.41-20.26) at lag-month 4. Rainfall of 200 mm significantly increased IRR of malaria compared to the median observed rainfall (133 mm) at lag-month 0 (IRR: 1.24, 95% CI: 1.01-1.52) and the increased cumulative IRR of malaria at month lags 1-4, with the highest cumulative IRR of 1.99(95% CI: 1.22-2.27) at lag-month 4. Average NVDI of 0.72 significantly increased the cumulative IRR of malaria compared to the median observed NDVI (0.66) at month lags 2-4, with the highest cumulative IRR of 1.57(95% CI: 1.09-2.25) at lag-month 4. CONCLUSIONS: In high-malaria transmission settings, high values of environmental covariates were associated with increased cumulative IRR of malaria, with IRR peaks at variable lag times. The complex associations identified are valuable for designing strategies for early warning, prevention, and control of seasonal malaria surges and epidemics.